

 Goal: a scripting array language

 	1. Introduction

 	2. Tutorial

 	3. Help

 	4. FAQ

 	5. Differences from K

 	6. Working with tables

 	7. Writing an extension

Last Update: 2024-10-31.

 	Goal: a scripting array language

 	1. Introduction

 	2. Tutorial

 	2.1. Introduction

 	2.1.1. Arithmetic

 	2.1.2. Arrays

 	2.1.3. Vectorization

 	2.1.4. Dyads and monads

 	2.1.5. Verbs and Adverbs

 	2.1.6. Control flow

 	2.1.7. Evaluation Order

 	2.1.8. Variables

 	2.1.9. Dictionaries

 	2.1.10. Errors

 	2.1.11. Functions

 	2.2. Examples

 	2.2.1. Word frequency

 	2.2.2. Handling simple climate data

 	2.3. Learn more

 	3. Help

 	4. FAQ

 	4.1. Origins

 	4.1.1. Why a new array programming language?

 	4.1.2. Influences

 	4.1.3. What does the name “Goal” stand for?

 	4.2. Design

 	4.2.1. Why use so many symbols over words?

 	4.2.2. Why are there a few non-ASCII symbols?

 	4.2.3. Does Goal perform tail-call optimization?

 	4.2.4. Why does Goal not have imperative loops?

 	4.2.5. Why does Goal not have closures?

 	4.2.6. Is Goal designed as a code golf language?

 	4.2.7. Is Goal stable? Is backward compatibility expected?

 	4.3. Syntax

 	4.3.1. Is Goal space-insensitive?

 	4.3.2. What’s the difference between newline and semicolon?

 	4.3.3. Is : syntax or an operator?

 	4.3.4. What are parens used for?

 	4.3.5. How do you write a delimited comment?

 	4.3.6. Which number and string literal syntax is supported?

 	4.3.7. Which regexp syntax is supported?

 	4.3.8. How do variable scoping rules work?

 	4.3.9. How do tacit compositions work?

 	4.3.10. How do .. and field expressions work?

 	4.4. Semantics

 	4.4.1. How does namespacing work?

 	4.4.2. How does function rank work?

 	4.4.3. Which values are false in conditionals?

 	4.4.4. How do zero value fills work?

 	4.4.5. How do error values work?

 	4.5. Primitives

 	4.5.1. Which primitives generalize operations to arrays element-wise?

 	4.5.2. Which primitives support dictionaries?

 	4.5.3. Why don’t weed-out and replicate call the filter for each element?

 	4.5.4. How do format strings s$ work?

 	4.5.5. How does regexp application work?

 	4.5.6. When does converge stop?

 	4.5.7. Can you return early from fold/scan?

 	4.5.8. How do decode/encode work?

 	4.5.9. How does time handle locations?

 	4.5.10. How do time layouts work?

 	4.5.11. Does time support date calculations?

 	4.5.12. How does json handle booleans and nulls?

 	4.5.13. What kinds of errors do primitives return?

 	4.5.14. What is the purpose of dirfs?

 	4.5.15. Are stdin/stdout/stderr/… configurable in run and open?

 	4.5.16. How do "sr" and "sw" open modes work?

 	4.6. Caveats

 	4.6.1. Why do -2+3 and - 2+3 give different results?

 	4.6.2. Why is 0n not equal to itself?

 	4.6.3. Implicit numeric type conversions and overflow

 	4.6.4. Fold and Each on empty lists

 	4.7. Scripting

 	4.7.1. How do you exit early with a status from a script?

 	4.7.2. Is there something similar to awk or perl -p one-liners ?

 	4.7.3. Is there editor support for Vim/Emacs/LSP/...?

 	4.8. Interactive use

 	4.8.1. How do you quit the REPL?

 	4.8.2. Can you get standard shortcuts and completion in the REPL?

 	4.8.3. How do you clear the screen in the REPL?

 	4.9. Implementation

 	4.9.1. How is Goal implemented?

 	4.9.2. Is Goal’s performance any good?

 	4.9.3. Does Goal optimize any special combinations of primitives?

 	4.9.4. When does Goal perform in-place mutations?

 	5. Differences from K

 	5.1. New Features

 	5.1.1. Atomic strings

 	5.1.2. String quoting constructs

 	5.1.3. Regular expressions

 	5.1.4. Error handling

 	5.1.5. Dict syntax and field expressions

 	5.2. Miscellaneous Changes

 	5.2.1. No digraphs: Each, Windows and Shifts

 	5.2.2. Minor differences in tacit verb trains

 	5.2.3. Group by, index-count

 	5.2.4. Tables and dicts

 	5.2.5. Domain-swap and self-dict

 	5.2.6. Zero values

 	5.2.7. Numeric conversions

 	5.2.8. Take, Drop, Without

 	5.2.9. Sort and Grade for dicts

 	5.2.10. Cond ? and logical and/or

 	5.2.11. New false values

 	5.2.12. List syntax uses left-to-right evaluation

 	5.2.13. Amend assignment is just sugar around amend

 	5.2.14. There is no splice triadic form

 	5.2.15. Rank-insensitive find ?

 	5.2.16. No deep-where

 	5.2.17. Get Global, Eval and Parse

 	5.2.18. Input/Output with keywords

 	6. Working with tables

 	6.1. Introduction

 	6.2. Reading CSV data into a table

 	6.3. Filtering and indexing

 	6.4. Sorting rows

 	6.5. Amending values

 	6.6. Aggregations

 	6.7. Group by

 	6.8. Learn more

 	7. Writing an extension

 	7.1. Introduction

 	7.2. Setting up an interpreter

 	7.3. Defining a zip file-system value

 	7.4. Defining a variadic function

 	7.5. The whole code

 	7.6. Learn more

1 Introduction #

Goal is an embeddable
array programming language
with a bytecode interpreter, written in Go. The command line
interpreter can execute scripts or run in interactive mode.
For installation, see the
README.md
file in the
project’s repository.
You can also
try Goal on the browser.
Moreover, you can follow these
README instructions
to build the documentation from sources and deploy it
locally to avoid depending on a network connection.

Like in most array programming languages, Goal’s builtins
vectorize operations on immutable arrays and encourage a
functional style for control and data transformations,
supported by a simple dynamic type system and mutable
variables (but no mutable values).

You can read about Goal’s origins and influences in the
Origins section
of the FAQ. If you already know about the K language, you
might want to read the
Differences from K
chapter.

Goal’s main distinctive features among array languages can
be summarized as follows:

	Dictionaries and table functionality (similar to most K dialects)

	Atomic strings:
"ab" "bc"="bc" → 0 1

	Unicode-aware string primitives:
_"AB" "Π" → "ab" "π"

	Perl-like quoting constructs and string interpolation:
qq/$var\n or ${var}/
and
rq#raw strings#

	Format strings:
"%.2g"$1 4%3 → "0.33" "1.3"

	Dedicated regular expression syntax:
rx/\s+/

	Error values

	Embeddable and extensible in Go

Goal also has support for standard features like I/O, CSV,
JSON, and time handling.

Goal shines the most in common scripting tasks, like
handling columnar data or text processing. Goal is also
suitable for exploratory programming.

The
next chapter
gives a tour of Goal’s features and showcases the language
in a couple of practical examples.

2 Tutorial #

 	2.1. Introduction

 	2.1.1. Arithmetic

 	2.1.2. Arrays

 	2.1.3. Vectorization

 	2.1.4. Dyads and monads

 	2.1.5. Verbs and Adverbs

 	2.1.6. Control flow

 	2.1.7. Evaluation Order

 	2.1.8. Variables

 	2.1.9. Dictionaries

 	2.1.10. Errors

 	2.1.11. Functions

 	2.2. Examples

 	2.2.1. Word frequency

 	2.2.2. Handling simple climate data

 	2.3. Learn more

This tutorial aims at giving a practical introduction to
Goal, showcasing the language in a couple of practical
examples after a short introductory tour of the language.
People with array programming experience might prefer to
skip the introduction or even jump directly into the concise
reference document with short usage examples in the
Help chapter.

This tutorial is presented as the result of an interactive
REPL session, like when you type the command
goal.
If you want, you can test things and experiment as you
follow the tutorial.
Also, for a better experience using the REPL (to get typical
keyboard shortcuts), you can install the readline wrapper
rlwrap
program (available as a package in most systems) and
then use
rlwrap goal
instead.

2.1 Introduction #

2.1.1 Arithmetic #

Arithmetic is similar to that of most programming languages,
as you can see in the following interactive REPL session:

 2+3 / addition
5
 5-3 / subtraction
2
 2*3 / multiplication
6
 3%2 / division (returns a float)
1.5
 2!5 / remainder (2 as divisor)
1
 -2!5 / quotient (2 as divisor)
2
 2&3 / minimum
2
 2|3 / maximum
3

A minor surprise might be that division is
%,
because
/
already has other uses, like commenting.
More surprising is maybe that the remainder and quotient
operator is spelled
!
and has its arguments reversed: like in various operators,
the meaning depends on the left argument’s domain and type.
Arithmetic operators are also used for common string
handling tasks:

 "a"+"b" / concatenation
"ab"
 "abc.ext"-".ext" / removal of suffix (if it exists)
"abc"
 "a"*3 / repeat string
"aaa"

Comparisons behave like arithmetic operators and return numeric values:
0
for false,
1
for true.

 2<3
1
 2>3
0
 2=3
0

2.1.2 Arrays #

Goal has a relatively small number of types. We just saw
that integers, like
2
or
0,
can also be interpreted as booleans.
There were a couple of floats too, like
1.5.
Strings can be built in a variety of ways, like
with double-quoting
"some text\n"
or a raw string quoting construct
rq`literal backslash: \`.
There are a few other scalar types, also called
atomic
types, like functions, regular expressions, handles, and
error values, as we’ll see later.

Arrays are immutable sequential collections that can contain
scalar values or nested arrays. In K and Goal, arrays are
free form and often just called
lists,
in contrast to many other array languages where arrays have
higher-dimensional rectangular shapes.
Arrays can be built in several ways:

3 5 7 / array with 3 integers (stranding notation)
3,5 7 / same using join operator between atom 3 and array 5 7
,3 / enlist integer atom 3 in an array of length 1
"a" "b" "c" / array with 3 strings
"a" "b" 5 / array with 2 strings and an integer
(3;"a";5 7) / array with 3 elements: integer, string, nested array

The stranding notation makes it very easy to write arrays of
numeric and string literals. More complex arrays, containing
nested arrays, other atom types, or variables, require the
join operator or the generic list notation with parens and
semicolons (or synonymous newlines). Also, note that the
generic list notation can only be used for lists with at
least two elements, because without semicolons parens
represent simply a parenthesized expression. A list with a
single element is written using the
,
operator using prefix application, like for
,3
in the above examples.

Arrays containing non-string and non-numeric types, nested
arrays or a mix of types, are called
generic
arrays.

2.1.3 Vectorization #

What makes Goal an array language is the generalization of
operations to whole immutable arrays.

 2 4+1 / addition of an array of integers with an integer atom
3 5
 8 9%2 4 / division on arrays of integers (returns floats)
4.0 2.25
 3!4 5 6 / remainder for array of integers
1 2 0
 2 3 4=3 / element-wise equality (returns an array of 0s and 1s)
0 1 0
 "a"*3 2 1 0 / repeat string (returns an array of strings)
"aaa" "aa" "a" ""

This vectorization extends beyond basic operations and
concerns any operation where it makes sense, like for
example number parsing, string formatting, and array
indexing.

 "n"$"1.5" "2.5" / parse numbers from strings
1.5 2.5
 "s"$1.5 2.5 / format values
"1.5" "2.5"
 "%.2f"$1.579 2.5 / sprintf-like formatting for floats
"1.58" "2.50"
 7 8 9[2 1] / bracket indexing at positions 2 and 1
9 8
 7 8 9@2 1 / indexing using “apply at” operator @
9 8
 (6 7;8 9;10 11)[;0] / deep indexing: get all rows, first column
6 8 10

In most programming languages, operators work on scalar
immutable values (also called
atoms),
like numbers and sometimes strings too, but containers are
handled using loops, higher order functions, or explicit
recursion. This means that such languages do not need many
operators: there aren’t that many interesting basic
operations when working with scalars.

When working at the immutable array level, there is a larger
range of interesting pure operations. For example:

 2#6 7 8 9 / take first two values
6 7
 2#(6 7;8 9;10 11) / same with generic array
(6 7
 8 9)
 5#6 7 8 9 / take 5 values, repeat if there aren't enough
6 7 8 9 6
 5#1 / repeat 5 times a single atom
1 1 1 1 1
 2_6 7 8 9 / drop first two values
8 9

By working on immutable arrays, these operations can be used
in the same way as arithmetic operators on scalars are in a
formula, without worrying about state.

2.1.4 Dyads and monads #

In the examples until now, most operators we saw were dyadic,
meaning they took two arguments. In Goal, like most array
languages, operators can also be used monadically, taking
only one argument, with a meaning that may or may not be
related to the dyadic one but generally has some kind of
mnemonic.

The polysemic nature of the operators is one of the
things that makes them so concise and versatile, yet
intuitive in the same way the polysemic nature of natural
languages is for us. Here are some examples of monadic uses:

 ,3 4 / enlist: nest array 3 4 in a list of length 1
,3 4
 #7 8 9 / length
3
 *7 8 9 / first
7
 _4.2 / floor
4.0
 !"Unicode-space separated\tfields" / fields
"Unicode-space" "separated" "fields"
 !10 / enum
0 1 2 3 4 5 6 7 8 9
 @10 / type: "i" for integers, "s" for strings ...
"i"
 &0 0 1 0 0 0 1 / where (indices of 1s)
2 6
 |7 8 9 / reverse
9 8 7

The number and versatility of operators may seem daunting at
first: there’s surely a learning curve there, but you’ve
probably learnt harder things already, so take it easy and
check the help when you need as you progress. In time, you
might end up loving using such a powerful notation!

2.1.5 Verbs and Adverbs #

Monadic and dyadic operators in array languages are often
called
verbs.
While most common array transformations can be
performed with them directly, more complex kinds of
iterations might still require recursion or higher-order
operators.
The latter are called
adverbs,
because of how they modify verbs. The modified verb is called a
derived verb.
There are three adverb operators in
Goal: fold
/,
scan
\,
and each
'.
They are quite versatile and can be used in a variety of
ways. A few examples:

 +/!10 / sum
45
 +\!10 / cumulative sum
0 1 3 6 10 15 21 28 36 45
 #'(4 5;6 7 8) / length of each nested list
2 3

It’s important that the adverb tightly follow the verb it
modifies, without spaces, otherwise it’s not an adverb but
special syntax, like for example
/
for comments.

Other forms of those adverbs allow for other kinds of
functional iterations, like the “converge” form or the
seeded “while” and “fold while” forms.

Following the same natural language metaphor, we call
noun
any expression used as a value in an operation or statement.
Note that verb, adverb and noun notions are purely
syntactic, because Goal’s grammar is context-free. In
particular, while verbs and adverbs represent functions, the
reverse is not true. As we’ll see
in a later section,
most ways of creating functions in Goal result in nouns.
Actually, even verbs and adverbs can be nominalized, for
example using parens around them, so while
+
is a verb,
(+)
is a noun, despite the fact that both represent the same
function.

 *(+;-) / first of generic array containing nominalized verbs + and -
+
 (nan)^1.0 0n 2.5 / weed out NaNs using nominalized nan verb
1.0 2.5

Adverbs can also modify nouns to form a
noun-derived verb,
including nouns representing non-function values, like with
join and split for strings.

 ","/"a" "b" "c" / join
"a,b,c"
 ","\"a,b,c" / split
"a" "b" "c"

2.1.6 Control flow #

Control flow tends to be less explicit than in scalar
programming languages, thanks to the powerful verbs and
adverbs, but sometimes explicit conditionals are useful.
Goal provides a
?[cond;then;else]
syntax form for if-then-else conditionals, as well as
logical syntax keywords
and
and
or
with short-circuit behavior.

 ?[3>0;"3 is positive";"uh?"]
"3 is positive"
 (3>0)and"3 is positive"
"3 is positive"
 (-3>0)and"-3 is positive"
0

Note that there are several kinds of
false values
in Goal, like numerical
0,
NaN and negative infinity,
"",
empty arrays and error values.

2.1.7 Evaluation Order #

Most programming languages give precedence to some operators
over others. This is not practical in array languages, given
the large number of operators. Instead, all verbs use the
same precedence and are right-associative.

 2*3+4
14
 (2*3)+4
10

In contrast, adverbs are left-associative, attaching tightly
to the nominalized verb or noun they follow.

 +/'(1 2;3 4) / sum in each sublist: read as (+/)'
3 7

2.1.8 Variables #

Variables can be defined as follows:

 a:2 / assignment (prevents echo in REPL)
 a
2
 a+:3 / assignment operation (like a:a+3)
 a
5
 (b;c.d):6 7 / list assignment
 b
6
 c.d / dot-prefixed variable name
7

Variables can also be interpolated within strings.

 "a = $a; b = $b; c.d = $c.d"
"a = 5; b = 6; c.d = 7"

2.1.9 Dictionaries #

Dictionaries are simply a pair of key and value arrays of
same length. They are created with the dyadic verb
!,
and many operators work on them in natural
ways.

 d:"a""b"!1 2 / keys!values (same as d:..[a:1;b:2] with dict syntax)
 d"b" / get value associated with key
2
 d,"b""c"!3 4 / merging dicts: upsert semantics
!["a" "b" "c"
 1 3 4]
 .d / get values
1 2
 !d / get keys (monadic use of ! on dict)
"a" "b"

Goal offers more advanced dict and table functionality
that’s out of scope for this tutorial: check the help and
the
Working with tables
chapter for learning about those.

2.1.10 Errors #

Goal has two kinds of errors: panics and error values. The
former are usually reserved for fatal programming errors and
may be produced by builtins, for example due to a type
error, or manually using
panic.
The latter are generated manually using the
error
keyword or produced by some builtins, in particular for IO
(input/output).

 error"msg" / generate custom error
error["msg"]
 rx "[a-z" / attempt to compile regexp from string
error["error parsing regexp: missing closing]: `[a-z`"]
 read"missing-file.txt" / attempt to read a file into a string
error[!["msg" "op" "path" "err"
 "open missing-file.txt: no such file or directory" "open" "missing-file.txt" "file does not exist"]]
 1+"a" / invalid operation: panics with message and displays error location
'ERROR i+y : bad type "s" in y
1+"a"
 ^

Error values are false values, which can be useful in
conditionals. The type verb
@
returns
"e"
for errors and can be used to unambiguously confirm that a
value is an error. Also, it’s possible to use the
'
syntax for returning errors early, like we’ll see in a
scripting example
later. Note how error values are not limited to plain
strings and can be any kind of value, like a dictionary, as
the last example above illustrates. See the question about
error values
in the FAQ for a deeper understanding of how error values
work.

2.1.11 Functions #

Functions are first-class citizens. User-defined functions
can be created via lambda-like expressions and can, like
all values, be assigned to variables:

 f:{[name;ext]"${name}.$ext"}
 f["fname";"csv"]
"fname.csv"
 f[;"csv"]"fname" / same with projection fixing second argument
"fname.csv"
 g:{2+x} / same as {[x]2+x} but using default argument x
 g 3
5
 g[3] / the same as g 3 or g@3
5
 g:2+ / same with projection fixing left argument: same as {2+x}
 g 3
5

For convenience, if no formal arguments are specified
between square brackets,
x,
y
and
z
can be used as implicit argument names. Also,
projection syntax can be used when deriving a new function
by fixing some arguments of another. Both features are very
useful for defining many short functions, often used inline
followed by an adverb.

 (-2!)\10 / converge form of the scan operator with function left
10 5 2 1 0
 f[;"csv"]'"fname1" "fname2" / apply projection for each name
"fname1.csv" "fname2.csv"

Within functions, several statements can be separated with
semicolons or newlines, and early return can be obtained by
using a colon
:
before the value we want to return, typically at the
beginning of a conditional’s branch. Note that
depending on how it’s used, the colon
:
can have other uses, like assignment if it follows an
identifier, but there can never be any confusion.

For example, the following multi-statement function returns
a string formatting the minimum and maximum of a numeric
list, but returns early
"min=?; max=?"
if the list is empty.

 minMax:{(#x)or:"min=?; max=?"; min:&/x; max:|/x; "min=$min; max=$max"}
 minMax 3 -2 7 5
"min=-2; max=7"
 minMax[!0]
"min=?; max=?"

Note that
&/
and
|/
on empty numeric lists return respectively the largest and
smallest numbers (of integer type in this case). This is
usually a good behavior, but we went a fancier route above
for the sake of example.

It’s worth noting that user-defined functions with lambda
notation, as well as variables and array literals, are
grammatically nouns, unlike primitive operators that work by
default as verbs or adverbs. This means they are parsed as
nouns, so parens are never needed around them for
nominalization, but application sometimes needs to be
explicit, with square brackets or
@,
when they might be parsed as the left argument of some
primitive verb or adverb instead.

 {x<0}^1 -3 4 -2 / weed out negative values
1 4
 (0>)^1 -3 4 -2 / same with projection (parens needed)
1 4
 a:3 -4 5 -6 7 -8 9
 b:0 0 1 0 0 0 1
 a@&b / index/apply (@) array where (&) 1s
5 9
 a[&b] / same with bracket indexing
5 9
 a&b / min (array used as left argument of &)
0 -4 1 -6 0 -8 1

2.2 Examples #

2.2.1 Word frequency #

Word frequency analysis is a simple problem that highlights
well some basic verbs. It’s also an opportunity to showcase
a simple use of regexps, as well as basic IO.

We’ll use as text source the first novel of the
I, Mor-Eldal
free (as in freedom) fantasy trilogy, a copy of which is
available
here
exported in markdown format.

The first step is reading the file into a string and
storing it into a variable.

 s:read"01-yo-mor-eldal-en.md"
 &s / number of bytes
570236

Now we’re going to split the string into words using a
regexp. A basic approach would be using a regexp like
rx/[A-Za-z-]+/,
but this only works if there are no non-ASCII letters. A
somewhat more robust approach that will work for more
languages may instead use a regexp like
rx/[\p{L}-]+/.
This makes use of a particular Unicode property that matches
all kinds of letters as understood by Unicode.

 words:_rx/[\p{L}-]+/[s;-1]

This stores into a variable
words
all matches of the given regexp. The
-1
argument specifies the maximal number of
desired matches, and a negative number means any number of
matches. Note how the regular expression can be applied like
a function. Finally, the verb
_
lowercases all letters in the words, so that we can then
compare their frequency in a more realistic manner.

 #words / number of words
103946
 5#words / take first 5 words
"i" "mor-eldal" "the" "necromancer" "thief"

We’ll now get into frequency computing. The monadic form of
the verb
%
is used to classify elements of an array.
It will return an array of integers that will attribute to
each distinct element a number, starting from zero. For
example:

 %"a""b""a""c""b""b"
0 1 0 2 1 1

Then, we can use the monadic form of the verb
=
to perform index-counting, to know how many
times each class occurs, in other words, how many zeros,
ones, twos ... there are.

 =0 1 0 2 1 1
2 3 1

This shows us that
"a"
(class
0)
has 2 ocurrences,
"b"
(class
1)
appeared 3 times, while
"c"
(class
2)
had only one occurrence.

We are now ready to perform the same with our word data.

 freq:=%words
 #freq / number of classes = number of distinct words
6131
 5#freq / take first 5 elements
4976 51 5292 2 17

If we match this with the first 5 words, we now can say that
"i"
has 4976 occurrences, and
"the"
has 5292.

To get a decreasing list of matchings between words and
frequencies, we can sort down a dictionary:

 d:>(?words)!freq

The verb
?
used in monadic form returns a new list of words without
duplicates, preserving only the first occurrences of each
element. Then, the verb
>
sorts down the dictionary by its values, in this case the
frequencies. We can now query the 5 most used words:

 5#d
!["the" "i" "and" "a" "to"
 5292 4976 3628 2654 2521]

Visualizing the default presentation of a dictionary can be
hard if there are many keys and values. The following
utility function provides a basic solution by putting both
the keys and values in a same list, and flipping its columns
and rows using the monadic form of the verb
+.

 tbl:{+(!x;.x)}
 tbl 10#d
("the" 5292
 "i" 4976
 "and" 3628
 "a" 2654
 "to" 2521
 "you" 1739
 "he" 1582
 "of" 1579
 "it" 1434
 "me" 1361)

A somewhat more involved exercise, which we’ll leave to the
reader, would be for example to study word frequency in
restricted text windows (using the windows
i^y
verb form on a list of lines, for example), and search for
unwanted repetitions that wouldn’t fit the style.

2.2.2 Handling simple climate data #

Handling CSV data of various kinds is something array
languages are particularly well-suited for. In this section,
we’ll parse simple daily climate data and process it to
obtain a few daily summary results that will be included
into a larger monthly summary.

Instead of proceeding in a REPL session as previously in this
tutorial, we’ll write a script file, suitable for being
called periodically to process a new day’s data. Because
there’s no echo showing intermediate results in such case,
you can use an output keyword, like
say
or
print
to output a string representation of a value to standard
output. Alternatively, you can use a logging
\
before a value, not following tightly a noun: that will
format and print the value on standard error (acting as
identity and doing nothing more).

Assume we have a set of files with daily climate data,
named following the year-month-day order convention, as in
20060102.csv.
We provide example files for two dates:
20230512.csv
and
20230513.csv.

The first day starts like this:

2023-05-12T00:00 11.3 87 1014.5 1085.720
2023-05-12T00:01 11.3 87 1014.6 1085.720
2023-05-12T00:02 11.3 87 1014.5 1085.720
2023-05-12T00:03 11.3 87 1014.6 1085.720
2023-05-12T00:04 11.3 87 1014.6 1085.720
...

The next day looks like this:

2023-05-13T00:00 13.8 76 1015.7 1123.540
2023-05-13T00:01 13.9 76 1015.6 1123.540
2023-05-13T00:02 13.9 76 1015.6 1123.540
2023-05-13T00:03 13.9 76 1015.5 1123.540
2023-05-13T00:04 13.9 76 1015.6 1123.540
...

They have five columns: date (one record per minute),
temperature (°C), relative humidity (%), air pressure (hPa),
and accumulated precipitation (mm).

For temperature, relative humidity and air pressure, we want
to get the mean, maximum and minimum values, as well as the
first time at which maximum and minimum occur. Also, because
there could be some missing entries or nonsensical erroneous
values, we want to know the number of valid records of
each type.

For precipitation, we want to know the day’s total
precipitation, as well as some basic intensity data: the
amount and time of the 1-hour window with most
precipitation. We’ll have to take into account practical
issues, like any missing entries or the possibility
of reaching the maximum recordable precipitation by the
collecting device we use (2500 in our case), at which point
it would be reset to zero again.

Because we want to make a script, we’ll want to use the
array
ARGS
of the arguments passed to goal. The first argument would be
the name of the script, which we’ll call
climday.goal,
and the second would be the date of the day in
20060102
format. We’ll first do some basic checking on arguments and
get the date:

(2=#ARGS)or:error"USAGE: goal clim.goal date
date should be in 20060102 format"
date:ARGS 1 / date from examples is "20230512" or "20230513"

In case of an incorrect number of arguments, we return with
:
a usage error produced with the monadic verb
error.
When using
:
to return early from global code, the program will exit with
status
1
if the returned value is an error.
Also, note the usage of the syntax keyword
or
with short-circuiting behavior.

We then read the csv file into variables.

(dates;temp;rh;pres;prec):" "csv 'read"${date}.csv"

This first calls
read
on a file corresponding to the given date.
Note
'
just before
read.
When not preceded by a noun or verb (without spaces),
'
does nothing if the result is not an error, but returns it
early otherwise (like
:
would). The latter could happen for example if the file
doesn’t exist or is not readable.
The dyadic verb
csv
parses the space-separated CSV text into a list of columns,
which we assign to various variables at once.

For convenience and easier reasoning later, we replace dates
with their unix epoch value:

dates:time["unix";dates;"2006-01-02T15:04"]

This makes use of the verb
time
which is described in the help. Here, we ask for the
unix time of the
dates
column, using the layout string
"2006-01-02T15:04"
for parsing .

Other columns contain numeric strings, so we’ll parse them
into numbers.

(temp;rh;pres;prec):"n"$(temp;rh;pres;prec) / parse into numbers

We will first treat the case of temperature, relative
humidity and air pressure, as they can be handled in a
similar way and without caring about missing values.

A helper formatting function for formatting the
times corresponding to a maximum or minimum will come in
handy:

fmtclock:time["15:04";]

We now write a
meanMaxMin
function that will take three parameters: a numeric data
column
c,
a filter function
f
for discarding nonsensical values, and a
format string
fmt
for displaying the mean, maximum and minimum.

meanMaxMin:{[c;f;fmt] (
 fmt${(+/x)%#x}fc:f^c / mean
 fmt$c[i:*&c=|/fc] / max
 fmtclock dates[i] / max-time
 fmt$c[i:*&c=&/fc] / min
 fmtclock dates[i] / min-time
 $#fc / number of records
)}

We’ll now explain the interesting bits, in particular those
using features we haven’t covered yet. In the line:

 fmt${(+/x)%#x}fc:f^c / mean

The
c
parameter contains numerical data, like
temp,
rh
or
pres.
The filtering code
fc:f^c
removes from
c
the values for which the filter function
f
returns a true value, and it then stores the result into a
variable
fc.
The filter could be for example
{(-20>x)|49<x}
to discard bogus temperatures that wouldn’t make any sense
(in the current location). Finally,
{(+/x)%#x}
computes the mean, and
fmt$
formats the result according to format
fmt,
for example
"%.1f".

Next is the line computing the maximum.

 fmt$c[i:*&c=|/fc] / max

The maximum value is obtained simply with
|/fc,
but, for getting the time next, we want to know when it
happens.
We compute a boolean vector
c=|/fc
of positions where the maximum value appears in the original
c.
The indices of positions with a
1
are obtained by calling “where”
&
on the result. Using “first”
*
on the list of indices returns the index of the first
occurrence of the maximum value in
c.
We store that index in
i
and use it to get the time
dates[i].
The minimum is obtained in a similar way. Finally, the
number of records is just the number of elements that remain
after applying the filter, and we format it into a string
with
$
(in the default way for integers).

Handling precipitation is a bit more complicated, because we
have cumulated precipitations instead of minutely
precipitation. Also, when going over
2500,
the accumulator overflows and goes to zero again. We’ll
therefore handle both things and convert our data into
minutely precipitation.

prec:{x-»x}prec-*prec:prec+{2500*+\x<»x}prec / minutely precipitation

First,
prec+{2500*+\x<»x}prec
cancels any resets at
2500.
The
x<»x
part puts a 1 at the places where resets, if any, occur, by
comparing
x
with itself shifted right by one, with a
0
as filler left, using the right-shift verb
»
(which can also be spelled
rshift).
The sum scan will transform the result such that each
element corresponds to the number of resets up to that
point, such that when multiplying by
2500
we obtain the amount that was discarded due to resets. The
{x-»x}prec-*prec
part transforms the obtained cumulative precipitation into
minutely precipitation. Total precipitation can now be
obtained and formatted easily with
"%.3f"$+/prec

As we said before, we also want to compute the 1-hour window
with most precipitation. This requires some further
processing of the precipitation data, filling any missing
records with
0.

unix:time["unix";date;"20060102"]
mdates:unix+60*!1440 / minutes of the day
prec:.(mdates!1440#0),dates!prec / fill missing minutes with zeros

This creates an array
mdates
with all the dates corresponding to minutes in the day. It
then merges a template dictionary
mdates!1440#0,
filled with zeros, with a dictionary corresponding to
recorded dates and precipitation data.

We can now compute the precipitation in all 60-minutes
windows of the day with
prec1h:+/60^prec.
The time of the 1-hour window with maximum
precipitation can then be obtained with
mdates@*>prec1h.
The
*>prec1h
call is an idiom that returns the index of the
first occurrence of the maximum value, obtained trough the
descending sorting permutation indices returned by
>.
It’s a simpler way to write
*&prec1h=|/prec1h.

We gather a record with all the desired daily results:

record:,//(
 date:time["2006-01-02";unix]
 / mean, max, max-time, min, min-time, nrecords for temp, rh, pres
 meanMaxMin[temp;{(-20>x)|49<x};"%.1f"]
 meanMaxMin[rh;{(0>x)|100<x};"%.0f"]
 meanMaxMin[pres;{(960>x)|1060<x};"%.1f"]
 "%.3f"$+/prec / total precipitation
 "%.3f"$|/prec1h:+/60^prec / max precipitation in 1 hour
 fmtclock mdates@*>prec1h / time of 1-hour window with max
)

Note the
,//
at the beginning that transforms any nested list into a flat
list (applies join-over until convergence). For the first
example date, if we display the record with
say,
we get:

2023-05-12 12.9 16.8 16:16 10.3 08:59 1435 79 89 10:23 63 16:08 1435 1013.9
1015.8 20:41 1012.5 04:52 1435 37.820 11.920 04:26

(wrapped for display purposes here, but it’s a single line)

All that is left is adding this record for the given date’s
day to a monthly CSV file, updating it if there is already
one.

month:time["200601";unix]
mdata:read["${month}.csv"]or"" / read data of the month
mcsv:{x[;0]=date}^+" "csv mdata / remove record for date if already present
mcsv,:,record / add our new record at the end
mcsv@:<mcsv[;0] / sort records again by date
'"${month}.csv"print" "csv+mcsv / write the file again

One new thing here is the monadic use of
+
applied to the result of the
csv
verb to flip columns ands rows, so that we get a list of
the CSV’s records, which in this case is more convenient
because we want to add/replace a particular record, not a
column.
Another novelty is the monadic form of
<
which returns a sorting permutation for its input, here the
date column of the monthly data. The assignment operation
@:
replaces old
mcsv
by indexing it on the sorting permutation. Finally, the
dyadic form of
print
allows to print the result to a specific file given as left
argument. Also, note how the verb
csv
is used both for parsing and serializing, depending on
whether the input is a string or a list of columns.

Running now the script for both rainy days produces this
result in the summary monthly file:

2023-05-12 12.9 16.8 16:16 10.3 08:59 1435 79 89 10:23 63 16:08 1435 1013.9
1015.8 20:41 1012.5 04:52 1435 37.820 11.920 04:26
2023-05-13 14.2 17.4 14:48 12.5 10:03 1437 80 88 11:01 69 14:28 1437 1016.2
1017.2 10:38 1014.8 02:17 1437 62.160 35.740 08:32

(both lines wrapped for display purposes here)

Well, this example was a bit long! Some things could still
be improved, like more robust and informative error handling
in case of invalid dates or data that should normally not
happen. Also, instead of directly replacing the monthly file
at the end, it would be safer to write it first to another
temporary file, to avoid corrupting the file in case of a
power outage during the write (though it can be re-obtained
by running the script for all days of the month). Still,
this script does some actually useful things without much
code, so I hope this example does highlight some of the
strengths of array programming!

To finish, we reproduce the complete script below:

(2=#ARGS)or:error"USAGE: goal clim.goal date
date should be in 20060102 format"
date:ARGS 1 / date from examples is "20230512" or "20230513"
(dates;temp;rh;pres;prec):" "csv 'read"data/${date}.csv"
dates:time["unix";dates;"2006-01-02T15:04"]
(temp;rh;pres;prec):"n"$(temp;rh;pres;prec) / parse into numbers
fmtclock:time["15:04";]
meanMaxMin:{[c;f;fmt] (
 fmt${(+/x)%#x}fc:f^c / mean
 fmt$c[i:*&c=|/fc] / max
 fmtclock dates[i] / max-time
 fmt$c[i:*&c=&/fc] / min
 fmtclock dates[i] / min-time
 $#fc / number of records
)}
prec:{x-»x}prec-*prec:prec+{2500*+\x<»x}prec / minutal precipitation
unix:time["unix";date;"20060102"]
mdates:unix+60*!1440 / minutes of the day
prec:.(mdates!1440#0),dates!prec / fill missing minutes with zeros
record:,//(
 date:time["2006-01-02";unix]
 / mean, max, max-time, min, min-time, nrecords for temp, rh, pres
 meanMaxMin[temp;{(-20>x)|49<x};"%.1f"]
 meanMaxMin[rh;{(0>x)|100<x};"%.0f"]
 meanMaxMin[pres;{(960>x)|1060<x};"%.1f"]
 "%.3f"$+/prec / total precipitation
 "%.3f"$|/prec1h:+/60^prec / max precipitation in 1 hour
 fmtclock mdates@*>prec1h / time of 1-hour window with max
)
month:time["200601";unix]
mdata:read["data/${month}.csv"]or"" / read data of the month
mcsv:{x[;0]=date}^+" "csv mdata / remove record for date if already present
mcsv,:,record / add our new record at the end
mcsv@:<mcsv[;0] / sort records again by date
'"data/${month}.csv"print" "csv+mcsv / write the file again

2.3 Learn more #

At this point, you should have a grasp of the spirit of the
language. You probably want to check out the
Help chapter
and experiment with simple problems of your own.
You then might want to follow with the
FAQ,
or jump directly into the
Working with tables
chapter.

3 Help #

This chapter replicates the REPL help system contents, also
found in the repository in
docs/help.txt.
It is the practical reference for the language.
More in-depth explanations of specific topics can be found
in the
FAQ
chapter.

TOPICS HELP
Type help TOPIC or h TOPIC where TOPIC is one of:

"s" syntax
"t" value types
"v" verbs (like +*-%,)
"nv" named verbs (like in, sign)
"a" adverbs (/\')
"tm" time handling
"rt" runtime system
"io" IO verbs (like say, open, read)
op where op is a builtin’s name (like "+" or "in")

Notations:
 i (integer) n (number) s (string) r (regexp)
 d (dict) t (dict S!Y) h (handle) e (error)
 f (function) F (dyadic function)
 x,y,z (any other) I,N,S,X,Y,A (arrays)

SYNTAX HELP
numbers 1 1.5 0b0110 1.7e-3 0xab 0n 0w 3h2m
strings "text\x2c\u00FF\n" "\"" "\u65e5" "interpolated $var"
 qq/$var\n or ${var}/ qq#text# (delimiters :+-*%!&|=~,^#_?@`/)
raw strings rq/anything until single slash/ rq#doubling ## escapes#
arrays 1 2 -3 4 1 "ab" -2 "cd" (1 2;"a";3 "b";(4 2;"c");*)
regexps rx/[a-z]/ (see FAQ for syntax and usage details)
dyadic verbs : + - * % ! & | < > = ~ , ^ # _ $? @ . (right-associative)
monadic verbs :: +: -: abs uc error …
adverbs / \ ' (alone or after expr. with no space) (left-associative)
expressions 2*3+4 → 14 1+|2 3 4 → 5 4 3 +/'(1 2 3;4 5 6) → 6 15
separator ; or newline except when ignored after {[(and before)]}
variables x y.z f data t1 π (. only allowed in globals)
assign x:2 (local within lambda, global otherwise) x::2 (global)
op assign x+:1 (sugar for x:x+1 or x::x+1) x-:2 (sugar for x:x-2)
list assign (x;y;z):e (where 2<#e) (x;y):1 2;y → 2
eval. order apply:f[e1;e2] apply:e1 op e2 (e2 before)
 list:(e1;e2) seq: [e1;e2] lambda:{e1;e2} (e1 before)
sequence [x:2;y:x+3;x*y] → 10 (bracket not following noun tightly)
index/apply x[y] or x y is sugar for x@y; x[] ~ x[*] ~ x[!#x] ~ x (arrays)
index deep x[y;z;…] → x.(y;z;…) (except for x in (?;and;or))
index assign x[y]:z → x:@[x;y;:;z] (or . for x[y;…]:z)
index op assign x[y]op:z → x:@[x;y;op;z] (for symbol op)
lambdas {x+y-z}[3;5;7] → 1 {[a;b;c]a+b-c}[3;5;7] → 1
 {?[x>1;x*o x-1;1]}5 → 120 (o is recursive self-reference)
projections +[2;] 3 → 5 (2+) 3 → 5 (partial application)
compositions ~0> → {~0>x} -+ → {- x+y} *|: → {*|x}
index at field x..a → x["a"] (.. binds identifiers tightly, interpolable)
field expr. ..a+b → {x["a"]+x["b"]} (field names without . and not in x,y,z)
 ..p.a+b+q.c → {[p0;x]p0+x["b"]+c}[a;] (p. projects; q. quotes)
field expr. at x.. a+b → {x["a"]+x["b"]}[x] (same as (..a+b)x)
dict fields ..[a:e1;b:e2;c] → "a""b""c"!(e1;e2;c)
amend fields x..[a:e1;b:e2] → @[x;"a""b";:;x..(e1;e2)]
cond ?[1;2;3] → 2 ?[0;2;3] → 3 ?[0;2;"";3;4] → 4
and/or and[1;2] → 2 and[1;0;3] → 0 or[0;2] → 2 or[0;0;0] → 0
return [1;:2;3] → 2 (a : at start of expression)
try 'x is sugar for ?["e"~@x;:x;x] (return if it’s an error)
log \x logs a string representation of x (debug/display tool)
discard `x discards well-formed x during parsing (ignore expression)
comments from line with a single / until line with a single \
 or from / (after space or start of line) to end of line

TYPES HELP
atom array name examples
i I integer 0 -2 !5 4 3 -2 5 0i
n N number 0.0 1.5 0.0+!5 1.2 3 0n 1e+10
s S string "abc" "d" "a" "b" "c"
r regexp rx/[a-z]/ rx/\s+/
d dictionary "a""b"!1 2 keys!values
f function + {x-1} 2* %[;2]
h handle open"/path/to/file" "w"open"/path/to/file"
e error error"msg"
/ file system dirfs"/path/to/dir"
 A generic array ("a" 1;"b" 2;"c" 3) (+;-;*;"any")

VERBS HELP
:x identity :[42] → 42 (recall that : is also syntax for return and assign)
x:y right 2:3 → 3 "a":"b" → "b"
+d swap k/v +"a""b"!0 1 → 0 1!"a" "b"
+x flip +(1 2;3 4) → (1 3;2 4) +42 → ,,42
n+n add 2+3 → 5 2+3 4 → 5 6
s+s concat "a"+"b" → "ab" "a" "b"+"c" → "ac" "bc"
-n negate - 2 3 → -2 -3 -(1 2.5;3 4) → (-1.0 -2.5;-3 -4)
-s rtrim space -"a\tb \r\n" " c d \n" → "a\tb" " c d" (Unicode’s White Space)
n-n subtract 5-3 → 2 5 4-3 → 2 1
s-s trim suffix "file.txt"-".txt" → "file"
*x first *7 8 9 → 7 *"ab" → "ab" *(+;*) → +
n*n multiply 2*3 → 6 1 2 3*3 → 3 6 9
s*i repeat "a"*3 2 1 0 → "aaa" "aa" "a" ""
%X classify %7 8 9 7 8 9 → 0 1 2 0 1 2 %"a" "b" "a" → 0 1 0
n%n divide 3%2 → 1.5 3 4%2 → 1.5 2.0
s%s glob match "*.csv"%"data.csv" "code.goal" "dir/data.csv" → 1 0 0
!i enum !5 → 0 1 2 3 4 !-5 → -5 -4 -3 -2 -1
!s fields !"a b\tc\nd \u00a0e" → "a""b""c""d""e" (Unicode’s White Space)
!I odometer !2 3 → (0 0 0 1 1 1;0 1 2 0 1 2)
!d keys !"a""b"!1 2 → "a" "b"
i!n mod/div 3!9 8 7 → 0 2 1 -3!9 8 7 → 3 2 2
i!s pad fields 3!"a" → "a " -3!"1" "23" "456" → " 1" " 23" "456"
s!s fields ",;"!"a,b;c" → "a""b""c" (fields cut on any of ",;"; ""!s is !s)
X!Y dict d:"a""b"!1 2; d"a" → 1 (same as d:..[a:1;b:2]; d..a)
&s byte-count &"abc" → 3 &"π" → 2 &"αβγ" → 6
&I where &0 0 1 0 0 0 1 → 2 6 &2 3 → 0 0 1 1 1
&d keys where &"a""b""c""d"!0 1 1 0 → "b" "c"
x&y min/and 2&3 → 2 4&3 → 3 "b"&"a" → "a" 0&1 → 0
|X reverse |!5 → 4 3 2 1 0
x|y max/or 2|3 → 3 4|3 → 4 "b"|"a" → "b" 0|1 → 1
<d sort up <"a""b""c"!2 3 1 → "c""a""b"!1 2 3
<X ascend <3 5 4 → 0 2 1 (index permutation for ascending order)
x<y less 2<3 → 1 "c"<"a" → 0 7 8<6 9 → 0 1
>d sort down >"a""b""c"!2 3 1 → "b""a""c"!3 2 1
>X descend >3 5 4 → 1 2 0 (index permutation for descending order)
x>y more 2>3 → 0 "c">"a" → 1 7 8>6 9 → 1 0
=s lines ="ab\ncd\r\nef gh" → "ab" "cd" "ef gh"
=I index-count =1 0 0 2 2 3 -1 2 1 1 1 → 2 4 3 1
=d group keys ="a""b""c"!0 1 0 → ("a" "c";,"b") ="a""b"!0 -1 → ,,"a"
f=Y group by (2!)=!10 → (0 2 4 6 8;1 3 5 7 9)
x=y equal 2 3 4=3 → 0 1 0 "ab" = "ba" → 0
~x not ~0 1 2 → 1 0 0 ~"a" "" "0" → 0 1 0
x~y match 3~3 → 1 2 3~3 2 → 0 ("a";%)~'("b";%) → 0 1
,x enlist ,1 → ,1 #,2 3 → 1 (list with one element)
d,d merge ("a""b"!1 2),"b""c"!3 4 → "a""b""c"!1 3 4
x,y join 1,2 → 1 2 "ab" "c","d" → "ab" "c" "d"
^d sort keys ^"c""a""b"!1 2 3 → "a""b""c"!2 3 1
^X sort ^3 5 0 → 0 3 5 ^"ca" "ab" "bc" → "ab" "bc" "ca"
i^s windows 2^"abcde" → "abcd" "bcde"
i^Y windows 2^!4 → (0 1 2;1 2 3) -2^!4 → (0 1;1 2;2 3)
s^s trim " #"^" #a ## b# " → "a ## b" ""^" \na\t b\t" → "a\t b"
f^y weed out {0 1 1 0}^4 1 5 3 → 4 3 (0<)^2 -3 1 → ,-3
X^t w/o keys & (,"b";1 0)^..[a:6 7;b:8 9] → (,"a")!,,7
 (0;..a>1;..b<0)^..[a:1 2 3;b:4 -5 6] → "a""b"!(,1;,4)
X^d w/o keys (,"b")^"a""b""c"!0 1 2 → "a""c"!0 2
X^Y w/o values 2 3^1 1 2 3 3 4 → 1 1 4 (like in[;X]^Y)
#x length #7 8 9 → 3 #"ab" "cd" → 2 #42 → 1 #"ab" → 1
i#y take/repeat 2#6 7 8 → 6 7 5#6 7 8 → 6 7 8 6 7 3#1 → 1 1 1
s#s count "ab"#"cabdab" "cd" "deab" → 2 0 1 ""#"αβγ" → 4
f#y replicate {0 1 2 0}#4 1 5 3 → 1 5 5 (0<)#2 -3 1 → 2 1
X#t w/ keys & (,"a";0 1)#..[a:6 7;b:8 9] → (,"a")!,,7
 (1;..a>1;..b>0)#..[a:1 2 3;b:4 -5 6] → "a""b"!(,3;,6)
X#d with keys "a""c""e"#"a""b""c""a"!2 3 4 5 → "a""c""a"!2 4 5
X#Y with values 2 3#1 1 2 3 3 4 → 2 3 3 (like in[;X]#Y)
_n floor _2.3 → 2.0 _1.5 3.7 → 1.0 3.0
_s to lower _"ABC" → "abc" _"AB" "CD" "Π" → "ab" "cd" "π"
i_s drop bytes 2_"abcde" → "cde" -2_"abcde" → "abc"
i_Y drop 2_3 4 5 6 → 5 6 -2_3 4 5 6 → 3 4
s_s trim prefix "pfx-"_"pfx-name" "pfx2-name" → "name" "pfx2-name"
f_Y cut where {0=3!x}_!10 → (0 1 2;3 4 5;6 7 8;,9) (same as (&f Y)_Y)
I_s cut string 1 3_"abcdef" → "bc" "def" (I ascending)
I_Y cut 2 5_!10 → (2 3 4;5 6 7 8 9) (I ascending)
$x string $2 3 → "2 3" $"text" → "\"text\""
i$s cut shape 3$"abcdefghijk" → "abc" "defg" "hijk"
i$Y cut shape 3$!6 → (0 1;2 3;4 5) -3$!6 → (0 1 2;3 4 5)
s$y strings "s"$(1;"c";+) → "1""c""+"
s$s chars/bytes "c"$"aπ" → 97 960 "b"$"aπ" → 97 207 128
s$i to string "c"$97 960 → "aπ" "b"$97 207 128 → "aπ"
s$n cast "i"$2.3 → 2 @"n"$42 → "n"
s$s parse i/n "i"$"42" "0b100" → 42 4 "n"$"2.5" "1e+20" → 2.5 1e+20
s$s rx string "r"$rx#[a-z]# → "[a-z]" "r"$"[a-z]" → "\\[a-z\\]"
s$s parse value "v"$qq/(2 3;"a")/ → (2 3;"a") ($x inverse for types in "inrs")
s$y format "%.2g"$1 4%3 → "0.33" "1.3" "%s=%03d"$"a" 42 → "a=042"
X$y binsearch 2 3 5 7$8 2 7 5 5.5 3 0 → 4 1 4 3 3 2 0 (X ascending)
?i uniform ?2 → 0.6046602879796196 0.9405090880450124 (between 0 and 1)
?i normal ?-2 → -1.233758177597947 -0.12634751070237293 (mean 0, dev 1)
?X distinct ?2 2 4 3 2 3 → 2 4 3 (keeps first occurrences)
i?i roll 5?100 → 10 51 21 51 37
i?Y roll array 5?"a" "b" "c" → "c" "a" "c" "c" "b"
i?i deal -5?100 → 19 26 0 73 94 (always distinct)
i?Y deal array -3?"a""b""c" → "a""c""b" (0i?Y is (-#Y)?Y) (always distinct)
s?r rindex "abcde"?rx/b../ → 1 3 (offset;length)
s?s index "a = a + 1"?"=" "+" → 2 6
d?y find key ("a""b"!3 4)?4 → "b" ("a" "b"!3 4)?5 → ""
X?y find 9 8 7?8 → 1 9 8 7?6 → 3
@x type @2 → "i" @1.5 → "n" @"ab" → "s" @2 3 → "I" @(+) → "f"
i@y take/pad 2@6 7 8 → 6 7 4@6 7 8 → 6 7 8 0 -4@6 7 8 → 0 6 7 8
s@i substr "abcdef"@2 → "cdef" (s[offset])
r@s match rx/^[a-z]+$/"abc" → 1 rx/\s/"abc" → 0
r@s find group rx/([a-z])(.)/"&a+c" → "a+" "a" "+" (whole match, group(s))
f@y apply at (|)@1 2 → 2 1 (like |[1 2] → 2 1 or |1 2 or (|).,1 2)
d@y at key ..[a:6 7;b:8 9]"a" → 6 7 (1 2!"a""b")2 → "b"
t@i at row ..[a:6 7;b:8 9]0 → "a""b"!6 8
X@i at 7 8 9@2 → 9 7 8 9[2 0] → 9 7 7 8 9@-2 → 8
.s get global a:3;."a" → 3
.e get error .error"msg" → "msg"
.d values ."a""b"!1 2 → 1 2
.X self-dict ."a""b" → "a""b"!"a""b" .!3 → 0 1 2!0 1 2
s.I substr "abcdef"[2;3] → "cde" (s[offset;length])
r.y findN rx/[a-z]/["abc";2] → "a""b" rx/[a-z]/["abc";-1] → "a""b""c"
r.y findN group rx/[a-z](.)/["abcdef";2] → ("ab" "b";"cd" "d")
f.y apply (+).2 3 → 5 +[2;3] → 5
d.y deep at ..[a:6 7;b:8 9]["a";1] → 7
t.y at row;key ..[a:6 7;b:8 9][1;"a"] → (,"a")!,7
X.y deep at (6 7;8 9)[0;1] → 7 (6 7;8 9)[;1] → 7 9
«X shift «8 9 → 9 0 «"a" "b" → "b" "" (ASCII keyword: shift x)
x«Y shift "a" "b"«1 2 3 → 3 "a" "b"
»X rshift »8 9 → 0 8 »"a" "b" → "" "a" (ASCII keyword: rshift x)
x»Y rshift "a" "b"»1 2 3 → "a" "b" 1

::[s;y] set global ::["a";3];a → 3 (brackets needed because :: is monadic)
@[d;y;f] amend @["a""b""c"!7 8 9;"a""b""b";10+] → "a""b""c"!17 28 9
@[X;i;f] amend @[7 8 9;0 1 1;10+] → 17 28 9
@[d;y;F;z] amend @["a""b""c"!7 8 9;"a";:;42] → "a""b""c"!42 8 9
@[X;i;F;z] amend @[7 8 9;1 2 0;+;10 20 -10] → -3 18 29
@[f;y;f] try at @[2+;"a";:] → "i+y : bad type \"s\" in y" (panic case)
 @[2+;3;:] → 5 (no-panic case)
.[X;y;f] deep amend .[(6 7;8 9);0 1;-] → (6 -7;8 9)
.[X;y;F;z] deep amend .[(6 7;8 9);(0 1 0;1);+;10] → (6 27;8 19)
 .[(6 7;8 9);(*;1);:;42] → (6 42;8 42)
.[f;y;f] try .[+;2 "a";:] → "i+y : bad type \"s\" in y" (panic case)
 .[+;2 3;:] → 5 (no-panic case)

NAMED VERBS HELP
abs n abs value abs -3.0 -1.5 2.0 → 3.0 1.5 2.0
csv s csv read csv"a,b\n1,2" → ("a" "1";"b" "2")
csv A csv write csv("a" "b";1 2) → "a,1\nb,2\n"
error x error r:error"msg"; (@r;.r) → "e" "msg"
eval s comp/run a:5;eval"a+2" → 7 (unrestricted variant of .s)
firsts X mark firsts firsts 0 0 2 3 0 2 3 4 → 1 0 1 1 0 0 0 1 (same as ¿X)
json s parse json json rq`{"a":true,"b":"text"}` → "a" "b"!0w "text"
nan n isNaN nan(0n;2;sqrt -1) → 1 0 1 nan 2 0i 3 → 0 1 0
ocount X occur-count ocount 3 4 5 3 4 4 7 → 0 0 0 1 1 2 0
panic s panic panic"msg" (for fatal programming-errors)
round n round2even round 1.2 1.7 2.5 3.5 → 1.0 2.0 2.0 4.0 (ties to even)
rx s comp. regex rx"[a-z]" (like rx/[a-z]/ but compiled at runtime)
sign n sign sign -3 -1 0 1.5 5 → -1 -1 0 1 1
uc x upper/ceil uc 1.5 → 2.0 uc"abπ" → "ABΠ"

s csv s csv read " "csv"a b\n1 2" → ("a" "1";"b" "2") (" " as separator)
s csv A csv write " "csv("a" "b";1 2) → "a 1\nb 2\n" (" " as separator)
x in s contained "bc" "ac"in"abcd" → 1 0 (same as x¿s)
x in Y member of 2 3 in 8 2 4 → 1 0 (same as x¿Y)
s json y write json ""json 1.5 2 → "[1.5,2]" (indent with s;disable with "")
S json y write json like s json y, but with (pfx;indent) for pretty-printing
n nan n fill NaNs 42.0 nan(1.5;sqrt -1) → 1.5 42.0 42 nan 2 0i → 2 42
i rotate Y rotate 2 rotate 7 8 9 → 9 7 8 -2 rotate 7 8 9 → 8 9 7

sub[r;s] regsub sub[rx/[a-z]/;"Z"] "aBc" → "ZBZ"
sub[r;f] regsub sub[rx/[A-Z]/;_] "aBc" → "abc"
sub[s;s] replace sub["b";"B"] "abc" → "aBc"
sub[s;s;i] replaceN sub["a";"b";2] "aaa" → "bba" (stop after 2 times)
sub[S] replaceS sub["b" "d" "c" "e"] "abc" → "ade"
sub[S;S] replaceS sub["b" "c";"d" "e"] "abc" → "ade"

eval[s;loc;pfx] like eval s, but provide loc as location (usually a
 path), and prefix pfx+"." for globals; does not eval
 same location more than once

utf8 s is UTF-8 utf8 "aπc" → 1 utf8 "a\xff" → 0
s utf8 s to UTF-8 "b" utf8 "a\xff" → "ab" (replace invalid with "b")

FLOAT MATH VERBS HELP
cos n cosine cos 0.0 1.57 3.14 → 1.0 0.00… -0.99…
sin n sine sin -1.57 0.0 1.57 → -0.99… 0.0 0.99…
sqrt n square root sqrt 2.0 4.0 9.0 → 1.41… 2.0 3.0

x atan n arc-tangent -1.0 0.0 atan 0.0 1.0 → 3.14… 1.57… (x defaults to 1)
x exp n exponential 2.0 exp 3.0 → 8.0 (x defaults to e~2.718…)
x log n logarithm 2.0 log 8.0 → 3.0 (x defaults to e~2.718…)

ADVERBS HELP
f'x each #'(4 5;6 7 8) → 2 3
x F'y each 2 3#'4 5 → (4 4;5 5 5) {(x;y;z)}'[1;2 3;4] → (1 2 4;1 3 4)
x I'y case (6 7 8 9)0 1 0 1'"a""b""c""d" → 6 "b" 8 "d"
I A'I at each m:3$!9;p:!2 2;(m').p → 0 1 3 4
x F`y eachleft 1 2,`"a""b" → (1 "a" "b";2 "a" "b") (same as F[;y]'x)
x F´y eachright 1 2,´"a""b" → (1 2 "a";1 2 "b") (same as F[x;]'y)
F/x fold +/!10 → 45
F\x scan +\!10 → 0 1 3 6 10 15 21 28 36 45
x F/y fold 5 6+/!4 → 11 12 {x+y-z}/[5;4 3;2 1] → 9
x F\y scan 5 6+\!4 → (5 6;6 7;8 9;11 12) {x+y-z}\[5;4 3;2 1] → 7 9
i f/y do 3(2*)/4 → 32
i f\y dos 3(2*)\4 → 4 8 16 32
f f/y while (100>)(2*)/4 → 128
f f\y whiles (100>)(2*)\4 → 4 8 16 32 64 128
f/x converge {1+1.0%x}/1 → 1.618033988749895 {-x}/1 → -1
f\x converges (-2!)\10 → 10 5 2 1 0 {-x}\1 → 1 -1
s/S join ","/"a" "b" "c" → "a,b,c"
s\s split ","\"a,b,c" → "a" "b" "c" ""\"aπc" → "a" "π" "c"
r\s split rx/[,;]/\"a,b;c,d" → "a" "b" "c" "d"
i s\s splitN (2)","\"a,b,c" → "a" "b,c"
i r\s splitN (3)rx/[,;]/\"a,b;c,d" → "a" "b" "c,d"
I/x decode 24 60 60/1 2 3 → 3723 2/1 1 0 → 6
I\x encode 24 60 60\3723 → 1 2 3 2\6 → 1 1 0

TIME HELP
time cmd time command with current time
cmd time t time command with time t
time[cmd;t;fmt] time command with time t in given format
time[cmd;t;fmt;loc] time command with time t in given format and location

Time t should consist either of integers or strings in the given format ("unix"
is the default for integers and RFC3339 layout "2006-01-02T15:04:05Z07:00" is
the default for strings), with optional location (default is "UTC"). See FAQ
for information on layouts, locations, and date calculations. Supported values
for cmd are as follows:

 cmd (s) result (type) fmt
 ------- ------------- ---
 "clock" hour, minute, second (I)
 "date" year, month, day (I) yes
 "day" day number (i)
 "hour" 0-23 hour (i)
 "minute" 0-59 minute (i)
 "month" 0-12 month (i)
 "second" 0-59 second (i)
 "unix" unix epoch time (i) yes
 "unixmicro" unix (microsecond version) (i) yes
 "unixmilli" unix (millisecond version) (i) yes
 "unixnano" unix (nanosecond version) (i) yes
 "week" year, week (I)
 "weekday" 0-7 weekday starting from Sunday (i)
 "year" year (i)
 "yearday" 1-365/6 year day (i)
 "zone" name, offset in seconds east of UTC (s;i)
 format (s) format time using given layout (s) yes

RUNTIME HELP
rt.get s returns runtime information named by s:
 "!" names of globals (S)
 "kw" names of verbal keywords (S)
 "loc" current eval location (s)
 "os" operating system (s) (Go’s runtime.GOOS)
 "pfx" current eval prefix for globals (s)
 "v" interpreter’s version (s)
rt.get["@";x] dict with internal info about x (for debug purposes only)
rt.log x like :[x] but logs string representation of x (same as \x)
rt.seed i set non-secure pseudo-rand seed to i (for repeatability in ?)
rt.time[s;i] eval s for i times (default 1), return average time (ns)
rt.time[f;y;i] call f. y for i times (default 1), return average time (ns)
rt.try[f;y;f] same as .[f;y;f] but the handler receives an error dict
 ..[msg:s;err:s] where msg contains the whole error stack trace

IO/OS HELP
abspath s return an absolute representation of path or joined path elements
chdir s change current working directory to s
close h flush any buffered data, then close handle h
dirfs s return a read-only file system value fs, rooted at directory s,
 usable as left argument in glob, import, open, read, stat
 fs subfs dir returns the subtree rooted at fs’ dir
env s return value of environment variable s, or an error if unset
 return a dict representing the whole environment if s~""
flush h flush any buffered data for handle h
glob s return file names matching glob pattern(s) (ignores stat errors)
import s read/eval wrapper roughly equivalent to eval[src;path;pfx] where:
 s with extension s without extension
 ---------------- ---------------------------------
 pfx~basename s pfx~sub["/";"."]s
 path~s path~s+".goal"
 src~read s src~(dirfs env"GOALLIB")read path
mkdir s create new directory named s (parent must already exist)
open s open path s for reading, returning a handle h
print x print"Hello, world!\n" (uses implicit $x for ~(@x)in"sSe")
read h read from handle h until EOF or an error occurs
read s read file named s into string lines:=-read"/path/to/file"
 or dict ..[dir:I;name:S] if s is a directory
remove s remove the named file or empty directory
run s run command s or S (with arguments) run"pwd" run"ls" "-l"
 inherits stdin and stderr, returns its standard output or an error
 dict ..[msg:s;code:i;out:s]
say x same as print, but appends a newline say!5
shell s same as run, but through "/bin/sh" (unix systems only) shell"ls -l"
stat x returns dict ..[dir:i;mtime:i;size:i] (for filehandle h or path s)

x env s set environment variable x to s
x env 0 unset environment variable x, or clear environment if x~""
x import s same as import s, but using prefix x for globals
x open y open path s with mode x in "r" "w" "a" (file read/write/append)
 or pipe from or to command s or S with "pr" "pw" (pipe read/write)
 or string s or init size i with "sr" "sw" (string read/write)
 returns handle h that may be called on:
 "buf" enable buffering (i) (modes "w" "a")
 "dir" whether file is dir (i) (mode "r")
 "mode" handle’s mode (s) (available for all modes)
 "name" file’s name (s) (modes "r" "w" "a")
 "nobuf" disable buffering (i) (modes "w" "a")
 "s" get string (s) (modes "sr" "sw")
 "sync" file sync (i or e) (modes "w" "a")
 open and run also accept x as a dict: see FAQ for advanced usage
x print y print y to handle/path x "/path/to/file"print"content"
i read h read i bytes from reader h or until EOF, or an error occurs
s read h read from reader h until 1-byte s, EOF, or an error occurs
x rename y renames (moves) old path x (s) to new path y (s)
x run s same as run s but with input string x as stdin
x say y same as print, but appends a newline

ARGS command-line arguments, starting with script name
STDIN standard input filehandle (mode "r", buffered)
STDOUT standard output filehandle (mode "w", buffered)
STDERR standard error filehandle (mode "w", unbuffered)

4 FAQ #

 	4.1. Origins

 	4.1.1. Why a new array programming language?

 	4.1.2. Influences

 	4.1.3. What does the name “Goal” stand for?

 	4.2. Design

 	4.2.1. Why use so many symbols over words?

 	4.2.2. Why are there a few non-ASCII symbols?

 	4.2.3. Does Goal perform tail-call optimization?

 	4.2.4. Why does Goal not have imperative loops?

 	4.2.5. Why does Goal not have closures?

 	4.2.6. Is Goal designed as a code golf language?

 	4.2.7. Is Goal stable? Is backward compatibility expected?

 	4.3. Syntax

 	4.3.1. Is Goal space-insensitive?

 	4.3.2. What’s the difference between newline and semicolon?

 	4.3.3. Is : syntax or an operator?

 	4.3.4. What are parens used for?

 	4.3.5. How do you write a delimited comment?

 	4.3.6. Which number and string literal syntax is supported?

 	4.3.7. Which regexp syntax is supported?

 	4.3.8. How do variable scoping rules work?

 	4.3.9. How do tacit compositions work?

 	4.3.10. How do .. and field expressions work?

 	4.4. Semantics

 	4.4.1. How does namespacing work?

 	4.4.2. How does function rank work?

 	4.4.3. Which values are false in conditionals?

 	4.4.4. How do zero value fills work?

 	4.4.5. How do error values work?

 	4.5. Primitives

 	4.5.1. Which primitives generalize operations to arrays element-wise?

 	4.5.2. Which primitives support dictionaries?

 	4.5.3. Why don’t weed-out and replicate call the filter for each element?

 	4.5.4. How do format strings s$ work?

 	4.5.5. How does regexp application work?

 	4.5.6. When does converge stop?

 	4.5.7. Can you return early from fold/scan?

 	4.5.8. How do decode/encode work?

 	4.5.9. How does time handle locations?

 	4.5.10. How do time layouts work?

 	4.5.11. Does time support date calculations?

 	4.5.12. How does json handle booleans and nulls?

 	4.5.13. What kinds of errors do primitives return?

 	4.5.14. What is the purpose of dirfs?

 	4.5.15. Are stdin/stdout/stderr/… configurable in run and open?

 	4.5.16. How do "sr" and "sw" open modes work?

 	4.6. Caveats

 	4.6.1. Why do -2+3 and - 2+3 give different results?

 	4.6.2. Why is 0n not equal to itself?

 	4.6.3. Implicit numeric type conversions and overflow

 	4.6.4. Fold and Each on empty lists

 	4.7. Scripting

 	4.7.1. How do you exit early with a status from a script?

 	4.7.2. Is there something similar to awk or perl -p one-liners ?

 	4.7.3. Is there editor support for Vim/Emacs/LSP/...?

 	4.8. Interactive use

 	4.8.1. How do you quit the REPL?

 	4.8.2. Can you get standard shortcuts and completion in the REPL?

 	4.8.3. How do you clear the screen in the REPL?

 	4.9. Implementation

 	4.9.1. How is Goal implemented?

 	4.9.2. Is Goal’s performance any good?

 	4.9.3. Does Goal optimize any special combinations of primitives?

 	4.9.4. When does Goal perform in-place mutations?

4.1 Origins #

4.1.1 Why a new array programming language? #

I’ve had a strong liking for array programming languages
since quite a few years, but I never managed to like
array-based text processing. The approach provides smart and
efficient solutions for some kinds of parsing tasks, as
BQN’s parser well illustrates, but it does not offer
immediate solutions to various fundamental text processing
needs that arise in common scripting tasks.

Also, Unicode and UTF-8 don’t play well with the array
vision. Text is complicated, there is no straightforward
mapping between “character” (a somewhat ill-defined notion
that is maybe best approached by grapheme clusters) and
bytes or code points. For example, some abstract characters
cannot be encoded by a single code point, and some abstract
characters have more than one possible encoding.

That’s why I feel a scripting language should consider
strings as a whole in most operations, which in an array
language carries implicit iteration over collections of
strings as an added benefit. Moreover, other than providing
all the usual string handling functions, I think there is
value in integrating standard text-processing features into
the design. Regular expressions are a nice tool for
describing character classes and Unicode properties: having
dedicated syntax support makes them more convenient and less
error-prone. String interpolation and quoting constructs
make simple templating more intuitive.

Text processing aside, Goal does have a few other
characteristics that I wanted to see in an array language:

	I wanted some of BQN’s primitives, but with less tacit stuff
and leaving the multi-dimensional complexity out, like K.
Dictionaries are nice to have too.

	I wanted both “ASCII is easy to type” and “no digraphs”.
Actually, there are a few exceptions that prove the ASCII
rule to help with “no digraphs”, but they each have an ASCII
keyword or idiom alternative, and they’re still common
enough symbols that I have direct access to them on my bépo
keyboard layout :-)

	Goal’s easily embeddable and extensible in Go, which has a
nice ecosystem and provides a higher-level interface than
C.

Last but not least, I had some previous experience with
various aspects of compilation, but I had never written a
whole bytecode interpreter from scratch before: it’s a great
and fun experience!

4.1.2 Influences #

Goal made use of many inspiration sources both for design
and implementation.

Language design was greatly inspired by both K (for syntax
and many primitives), in particular the
ngn/k
dialect,
and
BQN
(a few fundamental primitives like group by, classify and
shifts). I was thinking of Perl and Raku when adding regexp
literals, quoting constructs, and a couple of IO primitives.
There is some inspiration from the implementation language,
Go: similar syntax for numbers, string literals, and time
layouts.

I wrote the bytecode implementation after reading the one for
GoAWK,
and it still shows. I wrote the scanner after reading
ivy’s.
Vim syntax highlighting is based on
ngn/k’s.
Be sure to check out all those great projects if you haven’t yet!

4.1.3 What does the name “Goal” stand for? #

“Goal” stands for Go Array Language. Not to be confused with
GOAL, as in
Game Oriented Assembly Lisp,
nor with its namesake GOAL the
agent programming language!

4.2 Design #

4.2.1 Why use so many symbols over words? #

Goal uses both symbols and keywords depending on the nature
of the operation and its frequency.

Goal prefers symbols for common pure operations, like most
programming languages do for arithmetic operations. As an
array language, the range of interesting pure and common
operations increases significantly. Also, due to practical
considerations, Goal extends that reasoning to common string
handling functions too.

The usefulness of concise notation is well-known in
mathematics, and array languages have made use of it since
early APL versions. Unlike APL or BQN, but like its main
inspiration K, Goal prefers highly-polysemic symbols,
preferably ASCII.

That choice is based on my personal experience that
non-extensible polysemy is intuitive and natural as long as
the meanings are both mnemonic and easily resolved by
context. Note that using words would not be as well-suited
in that respect, because natural language already has its
own polysemic meanings.

For I/O operations, as well as less frequent operations,
Goal uses keywords. This makes the distinction between
math-like code and stateful code with side effects clear.

4.2.2 Why are there a few non-ASCII symbols? #

A few primitives have non-ASCII symbols:
«,
»,
¿,
´.
The first three have keyword alternatives. The last does
not have a single-keyword alternative (due to lack of
adverbial keywords which would be quite verbose anyway).
It does though have reasonable idiom alternatives. While not
ASCII, all of those symbols are still very common symbols
found even in Latin1 and used in many natural languages, so
they should be accessible on most systems without
configuration.

4.2.3 Does Goal perform tail-call optimization? #

Goal optimizes tail calls made with the special
o
variable. Other kinds of tail calls are not optimized: in
particular, tail-call elimination is not performed for
mutually recursive functions.

4.2.4 Why does Goal not have imperative loops? #

Most loops in Goal are performed implicitly by primitive
verbs. Other kinds of loops are replaced with functional
alternatives using the various adverbial forms. Absence of
any kind of imperative backwards flow in the language
simplifies both language semantics and static analysis of
bytecode in the implementation.

Both verbs and adverbs make the lack of imperative loop
syntax mostly a non-issue. Sometimes, due to the lack of
closures, you might need to explicitly pass around state
from local variables, for example with the “while” adverbial
form or when writing a tail-recursive function. You may
also simply use a global: abusing globals is harder in a
language where explicit loops are rare anyway.

4.2.5 Why does Goal not have closures? #

Most other K dialects do not feature them either, or only
some restricted form. The lack of closures is rarely felt,
as functional projections can be used to pass variables as
extra arguments: typical cases can be written succinctly with
tacit composition
and
field expression
syntax. In this context, not supporting closures helps with
implementation simplicity and performance with little
drawback.

If you feel like needing mutable closures at some point,
you might want to check before that what you want to do
can’t be done easily with the “while” or
“fold while”
adverbial forms, or using a tail-recursive function. If not,
just try using a global variable instead: it’s the only
source of mutable state in Goal, and it’s perfectly
reasonable for typical scripts, as it should be at most an
occasional need.

4.2.6 Is Goal designed as a code golf language? #

No, and I don’t even use it as such. I don’t have much
experience with code golf. Most array languages are concise
by their very nature and their larger range of symbol
operators, so Goal shares some of this heritage.

4.2.7 Is Goal stable? Is backward compatibility expected? #

Both Goal the language and the interpreter are stable.
Since version 1 was released, programs written in Goal or
using its Go API are expected to continue to work in future
versions without changes, within some limits detailed below.

While compatibility will be maintained for most programs,
there are a few limitations to the compatibility promise to
keep in mind:

	Bugs will be fixed, in particular if they violate documented
behavior or rely on an unspecified edge-case nobody cares
about. This is unlikely to break user code, but it could.
The changelog should document those. Of course, given that
Goal doesn’t provide a full language specification,
“unspecified edge-case” should be interpreted magnanimously:
while stability is an important priority, Goal is a
practical but opinionated niche language, developed as a
hobby project for fun.

	New features, libraries, or optional extensions may be
explicitly marked as experimental at first. The
compatibility guarantees won’t apply to them until
stabilized in a later release.

	New keywords may be defined under the reserved
rt
and
os
dot prefixes (the latter is currently unused).
If new keywords are added, they’ll either use one of those
prefixes, or be optional (through a build option). It is
recommended that extensions provide a way to use a custom
prefix. Also, most of the time, exporting new functionality
as globals instead of new keywords is preferable.

	Builtins like
read
or
stat
may return struct-like dict results: new fields may be
added, so dict length and key order may change.

	Panic error messages may be improved: do not rely on their
contents.

4.3 Syntax #

4.3.1 Is Goal space-insensitive? #

Goal is space-insensitive for the most part, except in a few
cases where they’re either needed or forbidden to
disambiguate:

	A space on at least one of the dot sides disambiguates n-ary
application
a . b
from a variable name
a.b
with dot-prefix.
Also, field syntax
a..b
binds identifiers tightly.

	No space is allowed between a verb or noun and the adverb
that modifies it.
Otherwise
/,
\
and
'
would get their non-adverb syntax meanings: commenting,
logging, and early-return on error.

	In an assignment operation, no space is allowed between the
operator and the colon.

	In bracket indexing, like in
f[x;y],
no space is allowed between the indexed (or applied) value
and the left bracket
[.
Otherwise the code between brackets would be parsed as a
sequence instead.

	When minus
-
is followed by a number with no space in between and also
doesn’t tightly follow a noun, it’s parsed as a single token
with the number and not as a verb.

	No space is allowed between the quoting construct name, like
qq
or
rx,
and the starting delimiter. This shouldn’t come as a
surprise, but Perl allows such a fancy thing, so I’m
mentioning it for exhaustivity :-)

Other than those few cases, you are free to use spacing in
the way that seems the most readable for you.

4.3.2 What’s the difference between newline and semicolon? #

As stated in the help, newlines are ignored after any of
({[
or before
)}]
but act as semi-colons otherwise. There’s still one
minor difference: duplicate newlines are ignored so that
it’s possible to freely use spacing and comments within a
multi-line list.

4.3.3 Is : syntax or an operator? #

Colon can represent various things in Goal: early return, a
verb returning its right argument, assignment syntax, or
either a monadic verb or modified assignment marker when
tightly following an operator (like in
+:).
Despite all those different uses, there’s no confusion in
practice.

The assignment or modified assignment meaning is used when
it follows an identifier like
x,
an indexing L-value like
x[i],
or a list of identifiers like
(a;b;c)
(only plain assignment).
If the colon is followed by indexing brackets, the verb
meaning is used. When there is an expression on the right,
but no noun on the left, a single colon means “return”.

4.3.4 What are parens used for? #

Goal uses parens for two things: list creation and
controlling operation precedence. List creation happens when
one or more semicolons
;
appear within parens. The semicolon is used as item
separator, and items are evaluated left-to-right.
Otherwise, the parens are used to control precedence of
operations, as is usual in mathematics and most languages.
Lists with a single item are created using the “enlist”
monadic form
,x.

As a special case, a couple of lone parens
()
represents an empty generic list. Note that other kinds of
empty lists don’t have a special syntax and have to be
produced using primitives: an empty list of
integers is
!0,
an empty list of strings is
!"",
and an empty list of floats is
?0.
While not syntax, those forms are currently optimized by a
basic constant-folding pass.

4.3.5 How do you write a delimited comment? #

Comments in Goal are either line or multi-line based, there
are no C-style delimited block comments allowing to control
both comment start and end within a line. However,
the discard
`expr
form that allows to ignore the expression on the right can
be used for similar purposes. As a special case,
(`expr)
is not parsed as an empty generic list, but is completely
ignored instead. This can be used to even more finely
control the portion of the code that should be ignored, when
necessary.

Also, the special
x:expr
form with literal number or string
x
can be used as a sort of prefix comment before an
expression: it is recognized and optimized, so there’s no
runtime overhead.

4.3.6 Which number and string literal syntax is supported? #

Number literals are based on Go’s integer and floating-point
literals. Goal first attemps to parse a number literal as a
64-bit integer using
ParseInt
(with automatic base recognition based on string prefix),
then as a 64-bit float using
ParseFloat,
or as a 64-bit integer duration using
ParseDuration.
Moreover, Goal introduces special literals for a few
specific numeric values:
0i
for the smallest 64-bit integer value,
0n
for NaN,
0w
for positive infinity, and
-0w
for negative infinity.

Double-quoted string literals are similar to Go’s too, as
described
in the specification,
but they can be multi-line and support variable
interpolation using
$var
or
${var},
meaning that a literal
$
needs to be escaped.
The
qq/STRING/
form accepts the same syntax as double-quoted strings, but
supports a custom delimiter, as described in the help.
The
rq/STRING/
is a raw string literal variant supporting a custom
delimiter that can still be inserted, but by doubling it
instead of by using a backslash.

4.3.7 Which regexp syntax is supported? #

The syntax for regexps is the same as the one described in
the
regexp/syntax
Go package, using the default Perl-like syntax. As an
extension, Goal allows multi-line regexps when using the
quoting construct
rx/PATTERN/.
In multi-line regexp literals, leading and trailing spaces
on each line are ignored, and space followed by
/
(or
#
if
/
is already used as the regexp delimiter)
starts a comment that spans until the end of the line.

4.3.8 How do variable scoping rules work? #

Variable scoping rules in Goal are simple: variables are
either global or local to a lambda function. In other words,
Goal has global scope and function scope. There is no
concept of block, and nested functions don’t have access to
their parent’s scope (see related question
about the lack of closures).

Within a lambda, single-colon assignment defines local
variables, so globals have to be assigned using double-colon
::
there.
A global variable can still be accessed, but priority is
given to the local variable in case of naming conflict.
Note, however, that assignment operations aren’t ambiguous,
so
::
isn’t needed for them. Also, local variable names cannot
have dots in them, so
::
isn’t needed either for global names with dots.

Note:
a related question is that keywords and variables share the
same namespace in source code: keywords are resolved early
during scanning and take priority over variable names. They
are fixed and cannot be reassigned in any way from Goal
code.

4.3.9 How do tacit compositions work? #

Goal’s tacit compositions are similar to other K dialects,
but they are just sugar for a lambda or a lambda projection.
A composition is formed from any kind of expression that
ends in a verb: it simply produces an equivalent function
with the implicit arguments added at the end. If the last
verb is monadic, the function takes just one argument
x.
If it is dyadic, the function takes two arguments
x
and
y.
Both dyadic built-in operators and derived verbs can be made
monadic by appending a
:
without spacing.
Dyadic keyword verbs can be made monadic by adding
::
at the end.
Note that arity in tacit compositions is a syntactic notion
unrelated to the semantic concept of
function rank.

Most compositions translate easily into a lambda, but when
compositions make use of non-constant expressions, they are
represented as a lambda projection. In particular,
compositions do not capture global variables: those get
automatically passed as extra arguments.

Some array languages support more complex tacit features,
like BQN or J. Those features carry some cognitive overhead,
at least for me. I find the regular switching between
explicit and tacit styles distracting.

4.3.10 How do .. and field expressions work? #

Double dot
..
is syntax sugar that can be used for several purposes, but
the main motivation is allowing concise evaluation of
expressions under a dict by referring to values using string
keys as unquoted variable names.

The simplest case is a tight bind between identifiers as in
x..a,
which is parsed as a single token and expands to
x["a"].
There’s a special consideration with respect to bracket
indexing as in
x..a[y],
which expands to
x["a";y]
instead of
x["a"][y].
In the common case where
x
holds a dict to some nested array, the result is the same,
but merging both applications is closer to how one would
write such cases by hand without using the
..
syntactic sugar, and it also simplifies making extensions
with new kinds of values callable in a method-like style
(for example an hypothetical heap value type could be made
usable as in
x..push[y]).
You can write
(x..a)[y]
to prevent this merging behavior when appropriate.

When
..
is not tightly surrounded by two identifiers, as in
x .. expr
where
x
can be any kind of expression,
a more general expansion is performed: if provided,
x
is passed as a single argument to a lambda (or lambda
projection) described by
expr
using special variable scoping rules, without braces.
Any variable named
a
(without dot-prefix and not among
x,
y,
z,
and
o)
appearing in
expr
expands to
x..a,
that is
x["a"].
Variables with a
p.
prefix are passed as extra projection arguments from the
parent context (without the prefix), while variables with a
q.
quoting prefix are inserted as-is (without the prefix).
Other kinds of dot-prefixed names always represent globals
and don’t get any kind of special treatment.
Note that those expansion rules are not only convenient for
concise dict manipulation but also sometimes for concise
definition of lambda projections without having to
explicitly pass local variables from a parent context as
extra arguments.

When
..
is tightly followed by an opening bracket
[,
we get unquoted assignment-style syntax for dict amend
d..[a:e1;b:e2],
that expands to
@[x;"a""b";:;x..(e1;e2)],
which is further expanded following the field expression
expansion rules already described.
When
d
is not provided, the syntax is simply used as dict creation
syntax, expanding directly to
"a""b"!(e1;e2),
as already shown in the help.
As a special case, when keys are provided without a
corresponding value in dict creation, as in
..[a;b],
the value is assumed to come from a variable named as that
key, expanding to
..[a:a;b:b],
that is
"a""b"!(a;b).
This is useful to create a dict from a few variables by
using their names as keys without naming redundancy.

Practical examples of the various kinds of usages for
..
can be found in the
Working with tables
chapter.

4.4 Semantics #

4.4.1 How does namespacing work? #

Goal makes use of a simple flat naming scheme for globals so
that they can be efficiently stored in an array, supporting
fast access by index. For convenience, variable names can
make use of a dot prefix as in
pfx.name.
Some primitives, such as
eval
and
import,
allow to set a prefix for evaluation. That prefix works as
a means to add code into a
namespace
of choice.
The default for
import
is to use a prefix per file and use the filename as the
prefix, but a custom prefix (even empty) can be used.
Variables with no prefix can be accessed as
main.name
from other namespaces.

If you need a way to pass a namespace-like structure as a
value, you have to use a dictionary. The
var..field
syntax is convenient when using dictionaries for such
purpose. Also, note that the
p.
and
q.
prefixes have a special meaning and are used to refer to
projection variables and quoted variables in
field expressions.

4.4.2 How does function rank work? #

In Goal, functions have a semantic rank (default arity). For
example:

	Monadic keywords and substitutions have a rank of 1.
Verbal operators and dyadic keywords have a rank of 2, even
when they have also a monadic case. Verbal operators can be
made monadic by appending a colon, as in flip
+:.
Monadic marking with colon is also used in
tacit compositions
but for syntactic reasons instead of semantic function rank.

	The rank of a lambda is the number of arguments, which
unlike for built-in verbs is fixed.

	The rank of a projection is either given by the number of
gaps when created with explicit bracket projection syntax,
or by the rank of the function minus the number of fixed
arguments (for lambdas, projections and derived verbs).

The rank of a function is a semantic notion and should not
be confused with syntactically resolved dyadic or monadic
usage of a verbal operator.

Other than in projections created by implicitly fixing some
of the firsts arguments, rank is mainly used in adverbial
forms, for example with the “fold” adverb
/,
which depending on the rank of the function it modifies can
either mean fold (rank > 1) or while/converge (rank 1). Note
that derived verbs also have a rank, which depends both on
the adverb and modified value:

	The rank of
f'
is the rank of
f,
or 1 if
f
is not a function.

	The rank of
F`
and
F´
is always 2.

	The rank of
f/
and
f\
is usually equal to the rank of
f,
but folds and scans have a special rule: when deriving from
a function of rank 2, the result has rank 1 (corresponding
to the non-seeded case), instead of rank 2. This is for
convenience, so that idioms like
,//
use the monadic meaning of
,/
which is much more useful and frequent.

4.4.3 Which values are false in conditionals? #

There are several kinds of false values in Goal:
0,
0i,
0n,
-0w,
"",
rx//,
the identity function
(:),
empty arrays and error values.

False values only matter when used in conditionals: the
?[cond;then;else]
form, as well as short-circuiting
and[x;y;…]
and
or[x;y;…].
Numerical
0
is the most common form of false value, while
0i
being false is useful so that
|/
on an empty list of booleans returns a false value.
NaNs
0n
and floating point negative infinity
-0w
being false is consistent with
0i
being false. Also, empty strings or arrays and error values
being false is often convenient for obvious reasons.

4.4.4 How do zero value fills work? #

In primitives that require it, Goal uses zero values to
provide fill elements, like for example in outdexing,
folds over empty arrays,
or in the take/pad
i@y
verb form.
The kind of zero value fills used for an array
X
depends on its type and/or first element, as described in
the following table:

	array type
	zero value fill

	"I"

	0

	"N"

	0.0

	"S"

	""

	"A"

	zero value of type
@*X
(defaulting to
!""
if
X
is empty)

Note that this means empty generic arrays may lose type
information: this could be partially solved with a smarter
prototype/fill system, but Goal’s behavior is simpler to
understand and implement.

Zero value fills are useful in practice: for example,
outdexing the result of “group by” will always return an
empty array. Also, by definition, zero values are also
false values,
which can occasionally be convenient.

4.4.5 How do error values work? #

Goal has a dedicated value type
"e"
for non-fatal errors, as for example returned by some IO
primitives. As seen in the tutorial, custom error values of
any kind can be produced with
error.
In addition to the
.e
form that retrieves the underlying value, and the syntactic
sugar
'e
that is used to return early on error, error values are
special in that they are callable using the
e..msg
form to produce an error message suitable for
user consumption, instead of a program string representation
as
$e
would return.

The
e..msg
call works in different ways depending on the type of error.
If
.e
is a string, number, or array, then
e..msg
returns a default string representation suitable as error
message.
Otherwise, the value
(.e)..msg
is computed: if it is a function
f,
a default string representation of
f@.e
is returned; otherwise, a default string representation of
(.e)..msg
itself is returned.
The
e..msg
call is implicit in string interpolation,
say
and
print,
as those contexts expect an error message suitable for user
consumption.

4.5 Primitives #

4.5.1 Which primitives generalize operations to arrays element-wise? #

This is the case of arithmetic primitives, but also of most
other primitives when the generalization is useful and does
not conflict with other usages. Primitives recursively
operating at the scalar or atomic level are often referred to
as
scalar,
pervasive,
or
atomic
functions, but there’s no universal terminology for them.
Some non-arithmetic primitives are right-atomic, meaning
they handle the right argument recursively but not the left
one, like for example mod/div
i!n.
More rarely, a primitive can be left-atomic, like
rotate.

Primitives working on more than two arguments may be
pervasive on one or more of the arguments. For example, the
time
verb is pervasive with respect to the time
t
argument but not the others.
The amend form is pervasive with respect to the index and
function arguments.

The case of IO primitives is worth mentioning: none of them
is truly pervasive. In particular, they do not operate
recursively on generic array inputs. However, when the help
says they work on file name string inputs, they may accept a
list of strings too: this is the case for
import,
mkdir,
read,
remove,
and
stat.
Unlike when calling them using the “each” adverb, they
return an error as soon as a call on any of the files
produces one. Also, both
mkdir
and
remove
return the number of files on success, while
stat
returns a table-like dict, instead of a list of dicts.
The monads
abspath
and
glob
also accept a list of strings but with special
non-pervasive semantics:
abspath
first joins the path elements into one, while
glob
gathers the path results for each pattern in a single common
list of strings.

4.5.2 Which primitives support dictionaries? #

In most cases, primitives handle dictionary values by
applying to their value arrays but returning matching keys
along when sensible. This happens, for example, in
monadic arithmetic forms like
-d,
or dyadic ones when only one
argument is a dict like
n+d,
as well as structural operations like reverse
|d
that simply reverses both key and value arrays.
For example:

-..[a:1;b:2] → ..[a:-1;b:-2]
|..[a:1;b:2] → ..[b:2;a:1]

The case of dyadic operations on dictionary pairs, for
arithmetic operators or merge, doesn’t require both dicts to
have a matching set of keys, using zero value fills as
needed. For example,
..[a:1;b:2]+..[b:3;c:4]
gives
..[a:1;b:5;c:4].
Also note that the merge form
d,d
uses upsert semantics: when some keys are common to both
dicts, it gives priority to values of the right one.

The help only mentions cases that have some special
dictionary-specific semantics. Also, some primitives have
additional forms for dictionaries with string keys and
columnar values: notation
t
is used to refer to such table-like dicts in the help.

4.5.3 Why don’t weed-out and replicate call the filter for each element? #

By passing the whole argument to the filter function and
making it return an array, the performance of
f#Y
and
f^Y
is greatly improved: the filter is only called once and
performs fast whole-array operations.

It’s also more flexible, as you can use the whole array to
compute the filtering condition: for example,
{x<(+/x)%#x}#Y
keeps all values lesser than the average.

4.5.4 How do format strings s$ work? #

Format strings follow the conventions of
Go’s fmt package
with some limitations: only
%-format
“verbs” related to integers, floating-point numbers and
strings are supported. Applying a format string to other
kinds of atomic values or using other formatting verbs will
produce an unspecified string result, but later Goal
versions may extend and specify support beyond that.

Format strings can work in two distinct modes in Goal.
If there is only one
%-format
verb in
s,
the
s$y
form is right-atomic, applying recursively to each atom in
y.
Otherwise,
y
is expected to be an array or dict of same length as the
number of
%-format
verbs appearing in
s,
matching
%-format
verbs to values in occurrence order (except if the
%[n]
indexing syntax is used).

4.5.5 How does regexp application work? #

General regexp application has the following signature:
r[x[;i;s]] .

The mandatory argument
x
should be a string or a recursively-handled list whose atoms
are all strings. If no additional arguments are provided, as
in
r[x],
the type of result depends on whether the regular expression
r
contains capturing groups. If it does not contain a
capturing group, the operation returns a boolean integer
telling whether the string contains any match of the regular
expression. Otherwise, the result is a list containing the whole
regexp leftmost match, followed by any submatches.

The optional argument
i
specifies the maximum number of matches (negative means any
number). A regexp with capturing groups still behaves the
same, but returns a list of results for successive matches.
A regexp without capturing groups now simply returns a list
of successive string matches.

The optional final argument
s
can be used to ask for a specific kind of result,
irrespectively of the presence of any capturing groups in
the regexp. The default behavior is convenient most of the
time, but you might occasionally want to avoid it. If
i
is not provided, a value of
"i"
for
s
indicates an integer boolean result is wanted; a value of
"s"
asks instead for a string match result for the whole regexp.
If
i
is also provided,
"s"
simply indicates that the result should ignore capturing
groups and treat them as non-capturing ones (single string
result for each successive match).

4.5.6 When does converge stop? #

The
f/x
and
f\x
forms both repeatedly apply a monadic function to successive
results and stop when the next result matches either the
current one or the original input. The
f\x
form gathers all intermediate results, like other scan-like
forms.

A common idiom based on converge is
,//X
for flattening a list of any depth.

4.5.7 Can you return early from fold/scan? #

Goal supports a “fold while” form
F/[f;x;y]
that combines the “fold” and “while” adverbial forms.
It works like a seeded fold, but it takes an additional
first argument
f
that is called on the accumulator
x
before each iteration. If
f x
returns a false value, the iteration will stop early and
return that value. There’s also a “scan while” form
F\[f;x;y]
that works in a similar way but collecting all prior
results. Note that both forms support as many list arguments
as the rank of
F
minus one, like for plain “fold” and “scan”.

Pure code rarely needs those extensions of “fold” and
“scan”, as there are often easy and efficient ways to
determine the portion of the array you want to iterate on.
However, it can sometimes come handy, like when the
iterating function
F
can return an error, for example after some IO processing,
making it easy to return early in case of error. The
alternatives in such cases, like using a plain “while” or a
recursive function, are cumbersome.

4.5.8 How do decode/encode work? #

Decode
I/x
is simply a polynomial evaluation function, implemented
using Horner’s method, mostly equivalent to the adverbial
projection
0{z+x*y}/.
The argument
x
in
I/x
represents the coefficients, and
I
represents the bases, which can be a single number or a list
of numbers.

Encode
I\x
is the inverse of decode, limited to non-negative
integer bases. As a special case, using
0
as base in encode is equivalent to using an integer larger
than the maximum value being encoded, so it can be a
convenient leftmost base.

4.5.9 How does time handle locations? #

Specifying a location follows the conventions described in
the documentation of the
LoadLocation
function from
Go’s time package,
using the mapping from names to locations described by the
IANA Time Zone database.
Note that
"UTC"
is always the default location, both when parsing and
formatting. To use the local time zone, you need to pass
"Local"
as location.

Location is used when formatting integer time values into a
string representation, and when parsing non-integer time
values without time zone offset information. In the latter
case, formatting will still use
"UTC".
If you need to convert from a string representation of time
to another with a specific location, you first need to
convert to an integer time value.

4.5.10 How do time layouts work? #

Time layouts follow the conventions described in
Go’s time package,
using the reference time
"01/02 03:04:05PM '06 -0700",
which is easy enough to remember (except for the historic
convention of month
01
before day
02).
For conveniency, the predefined constant layouts can be used
as
fmt
format argument too, for example
"UnixDate"
or
"DateOnly".
Any new additions in the Go package will only be supported
after some delay, because we want to support the latest two
Go releases at least.

4.5.11 Does time support date calculations? #

The
time
verb does not provide a special way to add raw durations,
subtract time values, or perform comparisons on them. Those
can be performed on an integer representation of the time
like the one given by
"unix".
Note hence that, unlike
time.Time
values in Go, time difference operations on values obtained
in successive reads of the current time won’t implicitly use
a monotonic clock reading.

Date calculations, like adding months or days, can be
performed using the
"date"
format, as it normalizes values outside their usual range,
like the
time.Date
function from
Go’s time package.
For example,
time["date";2024 14 0;"date"]
returns
2025 1 31.
As per the help, some format names can be used both as
cmd
or
fmt
argument: here, the first
"date"
argument asks for results in
(year;month;day)
form, while the
"date"
used as third argument determines how the time argument is
interpreted.
Like
time.Date,
the
"date"
format also accepts extra optional clock fields for hour,
minute, second, and nanoseconds.
Moreover, note that to process a list of dates at once, you
have to pass a single
(I;I;I)
list with all years, months and days instead.
This is in line with how other primitives like odometer or
encode/decode work in Goal, the rationale being that a short
list of long nested ones is more efficient and convenient
than a long one of short nested ones.

4.5.12 How does json handle booleans and nulls? #

Parsing and encoding use
-0w
for
false
and
0w
for
true.
Similarly,
0n
is used for nulls. One has to be careful of not encoding
infinity by mistake. The choice of using special floating
values is somewhat arbitrary but simple to implement and
understand, and it takes advantage of
-0w
being a false value, and of
0n
being easy to handle thanks to the
nan
verb. Note that some kind of arbitrary choice had to be made
anyway, because Goal lacks a dedicated boolean type and
general kind of null value.

4.5.13 What kinds of errors do primitives return? #

IO primitives, as well as parsing primitives and forms like
json,
time
or
"v"$,
return an error value when appropriate.
The underlying values of such errors can be plain strings,
but they are usually dicts.
In the latter case, the only mandatory key is
"msg",
which provides an error-message suitable for
user consumption. See the question about
how error values work
for the basics of error handling in Goal.

Depending on the kind of error, various kinds of fields with
extra information can be provided, as described in the
following table:

	key
	description (type)

	"code"

	exit code of external command (i)

	"err"

	short description of the error’s nature (s)

	"layout"

	format layout of
time
parse error (s)

	"newpath"

	new path name in
rename
(s)

	"offset"

	number of bytes parsed before error occurred
(in
json
and
"v"$)
(i)

	"oldpath"

	old path name in
rename
(s)

	"op"

	name of path-related operation
(s)

	"out"

	standard output of external command
(s)

	"path"

	file path
(s)

	"syscall"

	name of syscall
(s)

	"time"

	date/time of
time
parse error
(s)

The
lib/os.goal
and
lib/fs.goal
user libraries define a few globals with portable error
strings that can be compared with the
"err"
field when present:
ErrInvalid,
ErrPermission,
ErrExist,
ErrNotExist,
and
ErrClosed.
Each of those abstracts one or more concrete kinds of errors
in a portable way.

4.5.14 What is the purpose of dirfs? #

Goal’s verbs
glob,
import,
open,
read,
and
stat
accept a read-only file system value as left argument, with
similar semantics as the monadic cases but using the
provided file system value instead of the host’s file system
rooted at the current directory.
There is also a
subfs
dyad that is used to derive a new file system rooted at a
subtree.
All those operations accept slash-separated paths, working
portably on all systems.

In the case of
import,
the semantics follow the same rules as the empty extension
GOALLIB
case but using the provided file system value instead, and
accepting a file name with extension as well.

The
dirfs
monad returns a read-only file system value as provided by
the host operating system, rooted at the given directory.
Extensions may provide other kinds of file system values
that can then be used from Goal using the same builtins.

4.5.15 Are stdin/stdout/stderr/… configurable in run and open? #

Both
run
and
open
accept a left dict argument to handle more advanced usage
cases. By default, commands inherit from parent stdin,
stderr, and stdout, as well as the environment and working
directory.
When using a dict, the
open
dyad uses the special
"mode"
key for specifying the mode, defaulting to
"r".
The accepted configuration keys are described in the
following table:

	key
	description (type)

	open
modes

	"buf"

	whether to enable buffering (i)

	"w" "a"

	"dir"

	working directory (s)

	"pw" "pr"

	"env"

	"key=value"
environment list (S)

	"pw" "pr"

	"err"

	stderr filename (s,
""
to discard) or handle (h)

	"pw" "pr"

	"in"

	stdin filename (s) or handle (h)

	"pr"

	"out"

	stdout filename (s,
""
to discard) or handle (h)

	"pw"

	"s"

	stdin from input string (s)

	"pr"

When used in pipe configuration, file handles using modes
"r"
or
"w"
with buffering disabled will be directly connected to the
standard input/output/error of the process.

4.5.16 How do "sr" and "sw" open modes work? #

These modes produce handles for reading and building
in-memory strings. The string-writer
"sw"
mode can be useful when redirecting standard output or error
in a command pipe, or when progressively building a long
string. The string-reader
"sr"
mode is less useful, but can be used to pass a string as a
handle to a function expecting a handle argument.

The
"sw"
open
mode accepts either an initial string
s
argument, or an initial buffer size
i
argument.

4.6 Caveats #

4.6.1 Why do -2+3 and - 2+3 give different results? #

In the first case,
-2
is parsed as a single token. In the second case, the
-
represents the verb “negate”.

4.6.2 Why is 0n not equal to itself? #

Goal follows the usual floating-point arithmetic conventions
for NaN values, so any atomic comparison primitive
(among
=,
<,
and
>)
where either operand is
0n
will return
0.
Use the
nan
verb’s monadic and dyadic forms to search for or replace NaN
values when needed.

Note that only the above atomic comparison primitives are
affected by the floating-point standard rules.
In particular, the match
~
dyad supports NaNs and
0n~0n
holds.
As a result, all (self-)search primitives like “classify”,
“find” or “distinct” support inputs containing
0n
too using the same matching convention.
Also, as a special case, sorting primitives sort NaNs before
other numeric values.

4.6.3 Implicit numeric type conversions and overflow #

Goal has both 64-bit integer and floating point numbers,
whose types are
"i"
and
"n"
as returned by
@
respectively. Primitives convert from one to another whenever
possible, so most applications do not have to care about
this distinction.

Conversion from integer to float means that big integers
might be approximated. From float to integer, if the float
is too big to be represented or is NaN, it will not be
considered an integer by primitives that want an integer.
Also, operations on integer operands can overflow, as
defined by two’s complement integer overflow.

One thing worth noting is that while integers and floats
are two different types, Goal does not allow flat generic
arrays with mixed floats and integers: it will convert all
elements to floats in such cases, because that’s what’s most
convenient and efficient in the common case. If mixed
numeric types without coercion are needed, you will have to
enlist the values separately or append a dummy generic
value.

4.6.4 Fold and Each on empty lists #

When applying a function
f
using fold on an empty list
x,
as in
f/x,
the result is the default
zero value fill
for that type of list.
There is a special exception, though: specially recognized
adverbial forms (see section on
special combinations)
return a neutral element for the involved
operation instead, which helps avoid unwanted edge cases in
common operations. For example
*/!0
returns
1,
|/!0
returns
0i
(both the smallest possible integer and a false value),
and
|/?0
returns
-0w.

The “each” adverb also has a special consideration with respect
to empty lists: the result is usually an empty generic list,
but specially recognized forms may return specialized kinds
of empty lists. For example
#'()
returns
!0,
and
$'()
returns
!"".

4.7 Scripting #

4.7.1 How do you exit early with a status from a script? #

When executing a script using the
goal
command-line interpreter, using return
:x
in global code exits the script immediately.
The exit status will be non-zero if
x
is an error, and
0
otherwise. In the error case, the error message will be
displayed on standard error before execution ends. Also, if
the error value is a dict with a key
code,
the corresponding value is used to set the exit error code,
instead of the default
1,
following a convention similar to the one of the
run
dyad. Only portable integer values within
[1,125]
are supported for the exit error code.

When executing the code using the Go API instead, it is
possible to inspect the returned value and handle it in
whatever way is most appropriate.

Note that you can’t exit directly from within a lambda: you
have to return from there before, and then return early in
global code.

4.7.2 Is there something similar to awk or perl -p one-liners ? #

Goal does not provide a built-in command-line option for
that kind of mode of operation, but the
examples/goalx
script at the root of the distribution provides an
alternative that can be used for similar purposes.

Note that the
goalx
script works a bit differently from AWK and Perl, because
Goal favors loading a whole file into memory and performing
whole-array operations on all the lines, like other array
languages, instead of working line by line.

4.7.3 Is there editor support for Vim/Emacs/LSP/...? #

Advanced features like language-aware auto-completion and
syntax checkers are unlikely to be very useful when writing
typical Goal scripts, but some syntax highlighting is nice.

The
vim-goal
repository provides syntax highlighting support for Vim.
It is what I use and maintain. There is not yet support for
other editors (that I’m aware of). Highlighting beyond
strings, numbers and comments is not really that useful, so
adding support for basic syntax highlighting should be
simple enough to do for most editors, and might be both a
good contribution and learning experience. LSP would be a
nice bonus.

4.8 Interactive use #

4.8.1 How do you quit the REPL? #

Quitting the read-eval-print-loop is done by closing
standard input. This can be done with
Ctrl-D
on Unix-like systems. Typing
close STDIN
also works.

4.8.2 Can you get standard shortcuts and completion in the REPL? #

Goal’s interactive mode is quite minimal, so you need to use
an external program like the readline-wrapper
rlwrap
to get a more convenient interactive experience.
It’s as easy as installing
rlwrap
and then typing
rlwrap goal
instead of just
goal.
The
rlwrap
program provides some programmable completion functionality.

Also, the ongoing project
ari
by semperos aims at providing an interactive programming
environment built on top of Goal. Among other extra
features, including a dedicated SQL mode, it provides
language-aware auto-completion and a more interactive help
than Goal’s default minimal REPL.

4.8.3 How do you clear the screen in the REPL? #

On systems that have a
clear
command, you can clear the screen in interactive mode by
executing
print run "clear";.

4.9 Implementation #

4.9.1 How is Goal implemented? #

Goal is implemented as an embeddable bytecode interpreter,
written in Go, without any dependencies outside the standard
library. Go provides good garbage collection, a
comprehensive standard library, fast compilation, and a
higher-level library interface than a non-GC language would.
As a tradeoff, we cannot catch out of memory errors reliably
in programs, and a panic is expected in such cases.

The implementation makes use of a recursive-descent parser
that provides quite accurate error messages.

Interestingly, Goal is at least the third project for an
array language in Go, after
ivy
and
ktye/i.
While Goal and Go are quite the opposite in terms of
conciseness due to the huge gap in their programming
paradigms, they both share a practical mindset that
encourages idioms over abstraction, and writing executable
code over writing declarations.

4.9.2 Is Goal’s performance any good? #

Array performance is quite decent, with specialized
algorithms depending on inputs (type, size, range), and
variable liveness analysis that reduces cloning by reusing
dead immutable arrays (in code with limited branching).
However, it is not a goal to reach state-of-the-art (no
SIMD, and no bit booleans, fitting integers in arrays using
either uint8 or int64 elements).

Scalar performance is typical for a bytecode-compiled
interpreter (without JIT), somewhat slower than a C bytecode
interpreter: value representation in Go is less compact than
how it could be done in C, but Goal does have unboxed
integers and floats.

4.9.3 Does Goal optimize any special combinations of primitives? #

Goal uses optimized code paths for the following adverbial
and verbal forms:

+/ -/ */ |/ &/ ,/ / folds (monadic and dyadic forms)
,// / converge
+\ -\ |\ &\ / scans (monadic and dyadic forms)
<\ =\ / boolean scans (monadic and dyadic forms)
$' #' *' @' / each (monadic forms)
@[x;y;:;z] / tetradic amend with :
@[x;y;op;z] / with arithmetic op among + - * % | &
@[x;y;~] @[x;y;-] / triadic amend for not and negate

Also, Goal recognizes and optimizes a few monadic idioms:

++ / flip twice (make all rows have same size using take/repeat)
*| / last
*< / index of first occurrence of minimum value (for arrays)
*> / index of first occurrence of maximum value (for arrays)

4.9.4 When does Goal perform in-place mutations? #

Goal’s arrays are immutable, but in cases the implementation
can determine an array will not be used again, it will use
in-place mutation in most operations where it makes sense,
like arithmetic operators, join or amend.

Goal makes use of a reference count and a variable liveness
compilation pass to determine if a value is reusable and
will not be used again.
In typical branchless code portions the last use of local
variables is always determined.
In code with branches the analysis is incomplete and may not
always allow in-place mutation when variables are used in
branches (though common cases are still handled, like when
the branch ends the function, including early-return cases,
or when an explicit assignment operation is used).

Because memory management is handled by Go’s GC, Goal only
keeps track of a reference count for arrays, and only if
they’re not nested, otherwise they’re simply marked as
not reusable: this makes the implementation simpler and less
error-prone, and makes reference count handling faster in
the common case, but if you have a matrix as a list of
lists, any modification in a given line will replace the
whole line, so consider batching updates or using a flat
list in such cases.

5 Differences from K #

This chapter gives a tour of the main differences with other
K-like languages. It uses
ngn/k
as reference, because it’s the one I know the best.

 	5.1. New Features

 	5.1.1. Atomic strings

 	5.1.2. String quoting constructs

 	5.1.3. Regular expressions

 	5.1.4. Error handling

 	5.1.5. Dict syntax and field expressions

 	5.2. Miscellaneous Changes

 	5.2.1. No digraphs: Each, Windows and Shifts

 	5.2.2. Minor differences in tacit verb trains

 	5.2.3. Group by, index-count

 	5.2.4. Tables and dicts

 	5.2.5. Domain-swap and self-dict

 	5.2.6. Zero values

 	5.2.7. Numeric conversions

 	5.2.8. Take, Drop, Without

 	5.2.9. Sort and Grade for dicts

 	5.2.10. Cond ? and logical and/or

 	5.2.11. New false values

 	5.2.12. List syntax uses left-to-right evaluation

 	5.2.13. Amend assignment is just sugar around amend

 	5.2.14. There is no splice triadic form

 	5.2.15. Rank-insensitive find ?

 	5.2.16. No deep-where

 	5.2.17. Get Global, Eval and Parse

 	5.2.18. Input/Output with keywords

5.1 New Features #

5.1.1 Atomic strings #

One of the main differences in Goal is that strings are
atoms and are handled as such by the primitives. Most have
specific behavior for strings, providing built-in support
for common string-handling functionality. Because strings
are atoms, those primitives are pervasive (string-atomic)
when possible. The main ones are summarized in the following
table:

	s+s

	concatenate strings

	s*i

	repeat string

	s%s

	match glob pattern

	i!s

	pad string fields with spaces

	!s

	split a string into Unicode-space-separated fields

	=s

	split a string into lines (handles
"\r\n"
too)

	-s

	trim spaces right

	s-s

	trim suffix (if present)

	s_s

	trim prefix (if present)

	s^s

	trim a string on both sides using a cutset

	s#s

	number of non-overlapping instances of a
substring

	&s

	number of bytes

	s?s

	index of a substring

	_s

	map Unicode letters to lower case

	uc s

	map Unicode letters to upper case

Generally, there’s some mnemonic for each of those meanings.
For example
=
is drawn with two lines, so
=s
splits into lines (it could be seen as a kind of grouping by
line number, so somewhat related to
=d);
#X
is used for count,
so
s#s
does substring count;
!s
produces a list from an atom, like
!i;
and so on.

The format/cast/parse verb
$
has some new functionality, including sprintf-like
formatting. Also, the
sub
verb provides various string substitution facilities,
including regexp support.

It’s worth noting that, although strings are atoms, Goal
provides idempotent
"b"$
and
"c"$
to transform from and to arrays of bytes or codepoints
respectively, so array-like processing for strings is still
possible when appropriate. Also,
""\
can be used to split a string into a list of 1-char strings.

Also, note that because strings are already atomic, Goal
does not support symbols. If interning is really necessary
for performance reasons, classify
%
manually the strings into integers.

5.1.2 String quoting constructs #

Goal comes with more flexible and expressive string quoting
constructs, supporting the same set of escapes as Go’s
double-quoted strings (including Unicode escape sequences,
see
this section),
as well as Perl-like variable interpolation, like for
example in
"some $var".
Additionally, there is a Perl-like
qq/text $x/
form that allows for various kinds of delimiters, not only
the slash. Also, there is a raw string quoting construct
rq/raw string/
without escapes nor interpolation and with custom delimiter.

5.1.3 Regular expressions #

Regular expressions are a built-in type in Goal. They can be
built either at runtime with
rx s,
or using regexp literals of the form
rx/PATTERN/,
like
rx/\s+/.
The latter are compiled and checked at compile-time,
avoiding both the need to pre-compile regexps for several
uses, and issues with escaping special characters.

5.1.4 Error handling #

Goal makes a distinction between fatal errors, often due to
programming errors, and other kinds of errors, for example
from I/O. The former are just panic strings, while the
latter can represent arbitrary kinds of values and are
callable in a special way to produce an error message
suitable for user consumption.
In addition, Goal provides some specific syntax support for
making error handling less verbose using a
'expr
statement similar to
?
in Rust but using prefix form. Note that there’s no
confusion with the adverb each
',
which has to follow a verb or noun (without spaces).

See the
How do error values work?
question of the FAQ for more details.

5.1.5 Dict syntax and field expressions #

In addition to the dict
!
verb, Goal supports a special syntax for defining (and
amending) dicts
..[a:expr1;b:expr2],
as well as (field) expressions
..expr
that allow to evaluate things under a dict by using the key
names as variables (as long as they are identifier-like
strings). Expressions are actually syntax sugar for a
regular lambda projection with some additional convenience
features, including referring to arguments
x,
y
and
z
like in lambdas, and special prefixes
p.
and
q.
to either project (like in compositions) or insert as-is
(quote) regular variables, making expressions usable as a
limited form of immutable closure.

See the question about
field expressions
in the FAQ for more details.

5.2 Miscellaneous Changes #

5.2.1 No digraphs: Each, Windows and Shifts #

In Goal, all adverb digraphs were removed.
You still can append a colon and use
+:
to refer to the monadic version of a primitive. Because
there are no digraph adverbs, they also follow the same
convention as verbs: they are dyadic by default but accept
a colon at the end to become monadic: this is a minor
difference from K.

Both each-left
\:
and each-right
/:
can be done using
`
and
´.
The second one is a common character found even in Latin1,
but it is not ASCII!
As an alternative, each-right can be obtained by projecting
onto the left argument and regular each
f',
as in
f[x;]'.
It can often be simplified further as in
(a+)'
for primitive verbs. The
lib/mods.goal
file provides common adverb combinations involving
each-right as user-defined functions.

The use of each-prior
':
is replaced by the windows verb
i^Y
and the shift verbs
«
and
»
(with ASCII alternatives
shift
and
rshift).
Both approaches do have their strong and weak points. The
rationale here for Goal was that the shifting verbs are more
general and allow for more varied shifts of any size. Verbs
are also somewhat easier to use than adverbs. Also, I don’t
want digraphs, and I don’t know which symbol I could have
used for the adverb.

Last but not least, binsearch is now done with the
X$y
verb form, and the first bin gets index
0,
instead of
-1,
like in BQN.

5.2.2 Minor differences in tacit verb trains #

Tacit compositions work mostly the same in Goal, except for
adverbs being dyadic by default and needing a
:
for the monadic version, which is possible because adverb
digraphs are gone. Also, in Goal compositions are just sugar
for a lambda or a lambda projection. As a result, we get
precise locations for any errors, and access to debugging
tools such as
\x
or early-return.

5.2.3 Group by, index-count #

The group verb
=
in Goal uses BQN’s semantics. It works on indices only, and
returns an array of groups based on those indices, not a
dictionary. As a bonus, negative indices can be used to
discard values.
Also, Goal only has the “group by” variant, using either the
=d
form, that groups dictionary keys using values for group
indices, or the
f=Y
form, that groups
Y
using indices
f@Y.
The
=I
form is used for index-counting, often called unwhere,
similar to freq
#'=
in K but working on indices only and producing an array.
Grouping indices can still be done with
{=(!#x)!x}.

This approach seems more Unix-like to me, in that it doesn’t
need to do any kind of self-search on the values: that goes
into separate verbs, like distinct or the new self-classify
%X,
equivalent to
{x?x}.
While a bit more low-level and verbose in some cases, Goal’s
group makes it easy to implement various kinds of groupings,
including
“group by” functionality
for tables.
Also, K’s semantics can still easily be obtained by
combining group with self-searching verbs: for example
{(?x)!=(!#x)!%x}
for K’s
=X.
See
lib/k.goal
at the root of the distribution for efficient user-defined
equivalents of K’s “group”, “group keys by” and “freq”.

5.2.4 Tables and dicts #

While Goal doesn’t have a dedicated table type, several
primitives (like for filtering and indexing) offer
table-like functionality when dict keys are strings. Along
with field expressions, this allows for quite concise table
manipulation in Goal.

5.2.5 Domain-swap and self-dict #

Because Goal doesn’t have a dedicated table type, only
dictionaries, the
+d
form swaps keys and values, instead of producing a table.
Another nice new verb form for dicts is self-dict
.X
for lists, equivalent to
{x!x}.

5.2.6 Zero values #

Goal makes much less use of null values than ngn/k. For
example, outdexing results in various kinds of zero values,
depending on the array type.
For example, numeric arrays give
0
and string arrays give
"".
See the
How do zero value fills work?
question of the FAQ for details.

One nice thing about this approach is that outdexing the
result of group will always return an empty array. Another
advantage is that zero is common to all numeric types,
including the smallest ones.

Also, the new
i@y
form, called take/pad, takes advantage of zero-values. It’s
like
i#y,
but when going out of range, instead of repeating elements,
it pads with zero value fills. It’s similar to
y@!i,
but it avoids actually generating indices.

5.2.7 Numeric conversions #

In Goal, floating point numbers that can be represented as
an integer can be used anywhere the equivalent integer can
be used. This makes it so that, except for operations that
can overflow, the user doesn’t have to think about numeric
representations.

One thing worth noting is that flat numeric arrays
cannot be generic: if there’s a mix of integers and floats,
all values will become floats. This restriction rarely
matters, and simplifies both implementation and semantics.
Also, for convenience,
~
returns true when matching integers with equivalent floating
point numbers.

5.2.8 Take, Drop, Without #

There are some differences in these primitives. Without
X^Y
has its arguments reversed with respect to ngn/k, for
consistency with the renamed weed out
f^Y
and the symmetry with the new
X#Y
that does intersection now, like it did in K9 last time I
read about it. Note that, for consistency,
X#d
removes from
d
entries with keys not in
X,
which is different from ngn/k, though it will probably only
matter when there are duplicate keys.
The
f_Y
form now does “drop where”, which is more in line with the
I_Y
form.

In Goal, there are also two new filtering forms
X#t
and
X^t
that provide a select-where kind of functionality for
tables, which together with
field expressions
allows for convenient table processing.

Also, reshape was removed, replaced with “cut shape”
i$Y,
which can cut into lines (positive
i),
or columns (negative
i).

5.2.9 Sort and Grade for dicts #

Sorting works similarly as in ngn/k, except that
^X
was added as a means to sort a list without grading it, and
<d
and
>d
return dictionary results, preserving both keys and values.
Searching for null values is much less useful in Goal,
because few primitives can generate them (namely, parsing
with
"n"$).
It’s still possible to find
0n
values with the new
nan
keyword. The null integer value, called
0i
in Goal (following the type name), can be searched for with
equality too.

5.2.10 Cond ? and logical and/or #

Cond is written with
?[cond;then;else]
instead of
$[cond;then;else].
For convenience, there are also short-circuiting
and[x;y;…]
and
or[x;y;…],
which are nice for handling error cases.

5.2.11 New false values #

Goal introduces new false values in conditionals like
0i,
0n,
and
-0w.
The reason behind this change for
0i
is that it makes
|/!0
return a false value, avoiding a typical problematic edge
case. The other two new numeric false values were added for
consistency, so that numeric null and smallest values are
all false, though they’re more unlikely to be used in
conditionals.

5.2.12 List syntax uses left-to-right evaluation #

In Goal, expressions in a list are evaluated left-to-right
and are like sequences that collect all the values. This is
more convenient when using the list syntax together with
assignments, in particular in multi-line lists.

The only case of right-to-left evaluation in Goal happens
for arguments due to such order being the most useful in
dyadic infix operations, given verb associativity rules.

5.2.13 Amend assignment is just sugar around amend #

I’m not sure if all K implementations do the same thing
about this but, in Goal, the
x[y]op:z
form is equivalent to
x:@[x;y;op;z].
It returns the whole modified array, not just the parts that
where modified.

5.2.14 There is no splice triadic form #

Splice is mainly useful for array-style text-handling.
String-handling primitives cover that usage in Goal.

5.2.15 Rank-insensitive find ? #

Some K dialects, like ngn/k, have a rank-sensitivity
concept, that makes
X?
behave like an inverse of
X@
and facilitates searching for non-atomic values, at the cost
of not working for generic lists with mixed “ranks”.

The find dyad
?
is rank-insensitive in Goal. That means that the result
always has the same length as the right argument and is
always flat. Find works for any kind of value, but searching
for a single non-atomic value requires enlisting it.

5.2.16 No deep-where #

Because Goal uses monadic
&
pervasively for strings, having deep-where would not be very
natural given its dependency on the rank concept (which we
don’t follow for find
?
either).

5.2.17 Get Global, Eval and Parse #

The
.s
form in goal has the same meaning as for symbols in K: it
gets the value of a named global.

The usual general eval is done using the
eval s
form in Goal.

There is also a new
eval[s;loc;pfx]
triadic form. The location string
loc
serves two purposes: it is used to provide error locations
and to avoid evaluating twice a same location in the main
context. The prefix string
pfx
is used for globals in
s
during evaluation. This new form of eval is the basis for
the new
import
keyword, that provides a more typical import mechanism.

Goal also provides
"v"$s
as a partial inverse for
$x
that works on values whose atoms are only of numeric, string
or regexp type. It does not support arbitrary execution of
Goal code, but it can be implemented more efficiently than
general evaluation, without requiring byte-compilation nor
execution. It can be used as a serialization method with
acceptable performance and the advantage of better matching
Goal’s types than for example
json.

5.2.18 Input/Output with keywords #

Interacting with the OS is done using keywords in Goal.
There’s currently support for typical input and output
operations, running commands and pipes, and interacting with
the environment. There’s currently no networking support.
Until then, because Goal is usable as a library, such things
could be added by a user using Go’s standard library.

6 Working with tables #

This chapter is an introduction to the handling of columnar
data in Goal.

 	6.1. Introduction

 	6.2. Reading CSV data into a table

 	6.3. Filtering and indexing

 	6.4. Sorting rows

 	6.5. Amending values

 	6.6. Aggregations

 	6.7. Group by

 	6.8. Learn more

6.1 Introduction #

Goal is a small language and hence doesn’t come with as many
specialized features for dataframe manipulation as
languages like R. Still, Goal is well-suited for many
typical dataframe handling problems, without requiring to
learn how to use any new abstractions or DSLs: most of the
functionality is there in the core language, without extra
magic. Its small size and fast startup-time can also be an
advantage in typical short-running scripts.

To visualize the tables in the various examples, we’ll use
for convenience the
fmt.tbl[t;r;c;f]
formatting function available at
lib/fmt.goal
in the language’s repository, which displays at most
r
rows and
c
columns from a table
t,
using format string
f
for numbers.

/ NOTE: replace with actual path on your system: we assume
/ here we're in the "examples" directory in Goal's repository.
import"../lib/fmt.goal"
/ pp[t] pretty prints dict as table, assuming string keys, limiting results to
/ at most 5 rows and 8 columns, using "%.1f" to format floats.
pp:fmt.tbl[;5;8;"%.1f"]

Recall from the help that
import
can either take an absolute or relative path, or take a
library name with no extension, for example
import"fmt",
and search for a file
"fmt.goal"
at the location provided by the
GOALLIB
environment variable (if set).

Also, note how
pp
is defined using projection syntax to derive a new function
from
fmt.tbl
with some arguments fixed.

6.2 Reading CSV data into a table #

In this chapter, we’ll use as data the CSV file found at
examples/data/wesnoth-units.csv
in Goal’s repository, that contains (simplified) game data
for most units from the FOSS game
Wesnoth
(for version 1.18).

t:{(*'x)!1_'x}@csv 'read"data/wesnoth-units.csv" / read csv file into t
t:+_+t / lowercase column names
t:@[t;!"level cost xp hp movement";"i"$] / parse integer columns

The first line reads the CSV data into a list of columns
using the
csv
verb, and we then extract the header with keys for the table
and keep the rest as values. Note that Goal represents
tables as dicts: the keys are the names of the columns, and
the values contain the list of data columns. We also use the
'
return early on error syntactic sugar to propagate any
IO errors returned by
read.

The next line lowercases all column names for simplicity.
We use the monadic form of the
+
verb to exchange keys and values so that we can apply
_
on the column names, and then swap again: this handy
manipulation is possible because tables in Goal are actually
just dicts, which are essentially a pair of key and value
arrays.

The third line maps the
"i"$
parsing form on integer columns.

We can now use
pp
to visualize the first 5 rows and 8 columns of the table:

pp t
/ === Table 307x9 ===
/ id race alignment level cost xp upgrade hp
/ ------------- ------------ --------- ----- ---- --- ----------- --
/ "Blood Bat" "bats" "chaotic" 1 23 37 "Dread Bat" 27
/ "Dread Bat" "bats" "chaotic" 2 32 100 "" 33
/ "Vampire Bat" "bats" "chaotic" 0 13 22 "Blood Bat" 16
/ "Boat" "mechanical" "lawful" 1 10 50 "" 1
/ "Galleon" "mechanical" "lawful" 1 10 50 "" 1

(the output for all examples is showed in comments for reading convenience)

As you can see, unlike in R, primitives in Goal have a
simple scope and are designed to be combined with other
primitives. They do not have their own mini-language with
lots of options configuring all sorts of desired behaviors
that could be useful in a specific task like CSV parsing:
you use a primitive for reading the file, another for
parsing the data, another for performing renames, another
for parsing numbers, and so on. This combinatoric,
idiom-based, Unix-like approach shows clearly each
do-one-thing-and-do-it-well array operation without hiding
everything behind a single black box abstraction. This
style is something that most array languages share to some
degree.

6.3 Filtering and indexing #

A fundamental operation on tables is filtering, like with dplyr’s
filter
verb or the WHERE clause in SQL. Filtering on tables can be
done easily in Goal using the
X#t
dyadic form. The left argument is a list of filters. The
first applies to the keys (playing the role of
select),
and the rest applies to the rows in succession. Note that
this means order can have performance implications.

The filters are functions returning booleans, as in the
f#Y
array filtering form. The key selection filter and the first
row filter can also be given directly as booleans; moreover,
the former can also consist of a list of column names.

For example selecting all the rows having
"goblin"
in the
race
column can be done as follows:

pp(1;..race="goblin")#t / rows where race is "goblin"
/ === Table 3x9 ===
/ id race alignment level cost xp upgrade hp
/ ----------------- -------- --------- ----- ---- -- ---------------- --
/ "Goblin Impaler" "goblin" "chaotic" 1 13 50 "" 26
/ "Goblin Rouser" "goblin" "chaotic" 1 13 50 "" 31
/ "Goblin Spearman" "goblin" "chaotic" 0 9 18 "Goblin Impaler" 18
pp(rx/p$/!:;..race="goblin")#t / same but only columns with name ending in p
/ === Table 3x2 ===
/ xp hp
/ -- --
/ 50 26
/ 50 31
/ 18 18

In the first example, the true value
1
tells the filtering verb to keep all columns,
while
..race="goblin"
is a function described using
field expression syntax,
equivalent to
{x["race"]="goblin"},
and is used to filter rows. The field expression syntax is
handy when manipulating tables, because it allows to refer
to columns directly by name, as if they were variables. The
second example is the same but uses a regexp to filter
column names.

Several row filtering functions can be used at once:

pp(1;..race="human";..alignment="chaotic")#t
/ === Table 17x9 ===
/ id race alignment level cost xp upgrade hp
/ ---------- ------- --------- ----- ---- --- ------------ --
/ "Outlaw" "human" "chaotic" 2 24 71 "Fugitive" 47
/ "Assassin" "human" "chaotic" 3 46 150 "" 51
/ "Bandit" "human" "chaotic" 2 22 61 "Highwayman" 50
/ "Footpad" "human" "chaotic" 1 14 35 "Outlaw" 30
/ "Fugitive" "human" "chaotic" 3 55 150 "" 68

Because column names are simply the keys of a dictionary,
while the column values are its array of values, it’s easy
to do location-based selections of both columns and rows:

pp 3#t / select first 3 columns
/ === Table 307x3 ===
/ id race alignment
/ ------------- ------------ ---------
/ "Blood Bat" "bats" "chaotic"
/ "Dread Bat" "bats" "chaotic"
/ "Vampire Bat" "bats" "chaotic"
/ "Boat" "mechanical" "lawful"
/ "Galleon" "mechanical" "lawful"
krng:{[t;x;y](k?x)_(1+k?y)#k:!t} / inclusive key range from x to y
pp krng[t;"alignment";"cost"]#t / select range of columns
/ === Table 307x3 ===
/ alignment level cost
/ --------- ----- ----
/ "chaotic" 1 23
/ "chaotic" 2 32
/ "chaotic" 0 13
/ "lawful" 1 10
/ "lawful" 1 10

Similar to filtering, row indexing can be used to select a
subset of rows or columns. This uses a special Goal feature
that allows table-like indexing for dicts with string keys
when indexing first by row. Unlike filtering, indexing also
allows to reorder columns as specified.

pp t[10+!5] / select from row index 10 to 14
/ === Table 5x9 ===
/ id race alignment level cost xp upgrade hp
/ ---------------- ------- --------- ----- ---- --- ---------------- --
/ "Drake Burner" "drake" "lawful" 1 21 43 "Fire Drake" 42
/ "Drake Clasher" "drake" "lawful" 1 19 41 "Drake Thrasher" 43
/ "Drake Enforcer" "drake" "lawful" 3 58 150 "" 85
/ "Drake Fighter" "drake" "lawful" 1 17 41 "Drake Warrior" 39
/ "Fire Drake" "drake" "lawful" 2 35 84 "Inferno Drake" 63
pp t[-5?#*t] / randomly select 5 distinct rows
/ === Table 5x9 ===
/ id race alignment level cost xp upgrade hp
/ ---------------- --------- --------- ----- ---- --- ----------------- --
/ "Giant Rat" "monster" "chaotic" 0 5 25 "" 15
/ "Nibbler" "monster" "neutral" 0 15 26 "Caribe" 28
/ "Gryphon Master" "gryphon" "neutral" 2 40 100 "" 51
/ "Royal Warrior" "human" "lawful" 3 47 150 "" 64
/ "Saurian Oracle" "lizard" "chaotic" 2 28 74 "Saurian Prophet" 29
pp t[!-5;"hp""id"] / select last 5 rows of columns "hp" "id" (reorder)
/ === Table 5x2 ===
/ hp id
/ -- --------------
/ 80 "Ancient Wose"
/ 64 "Elder Wose"
/ 52 "Wose"
/ 26 "Wose Sapling"
/ 56 "Wose Shaman"
pp -5#'"hp""id"#t / same using take on each column and "keep keys" (keep order)
/ === Table 5x2 ===
/ id hp
/ -------------- --
/ "Ancient Wose" 80
/ "Elder Wose" 64
/ "Wose" 52
/ "Wose Sapling" 26
/ "Wose Shaman" 56

6.4 Sorting rows #

Sorting rows so that some column is in ascending or
descending order can be done easily:

pp t@>t..level / sort by level in descending order
/ === Table 307x9 ===
/ id race alignment level cost xp upgrade hp
/ ------------------ ---------- --------- ----- ---- --- ------- ---
/ "Elder Mage" "human" "neutral" 5 90 250 "" 60
/ "Fire Dragon" "monster" "chaotic" 5 100 250 "" 101
/ "Armageddon Drake" "drake" "lawful" 4 118 200 "" 98
/ "Dune Paragon" "dunefolk" "lawful" 4 78 200 "" 82
/ "Wyvern Rider" "monster" "liminal" 4 102 200 "" 85

Note how the verb
>
is used to return sorting indices. This method is flexible,
but unlike dataframe libraries in R or python, or SQL
queries, we refer here twice to the table
t,
because we are simply using the indexing verb
@
that can take inputs unrelated to the table. Field
expressions make it easy to write order-by functions for
tables suitable for chaining:

pp (..x@<level)(..x@<cost)t / ascending order by level and cost
/ === Table 307x9 ===
/ id race alignment level cost xp upgrade hp
/ ---------------- --------- --------- ----- ---- -- --------------- --
/ "Dark Horse" "" "chaotic" 0i 0i 24 "Black Horse" 0i
/ "White Horse" "" "" 0i 0i 0i "" 50
/ "Sand Scamperer" "" "" 0i 0i 0i "Sand Scuttler" 27
/ "Sand Scuttler" "" "" 0i 0i 0i "" 40
/ "Giant Ant Egg" "monster" "neutral" 0 4 4 "Giant Ant" 32

The last example illustrates the case of NaN-like integer
entries
0i.
In this case, it corresponds to units for which the CSV file
doesn’t provide a level or cost. We may want to remove rows
for which there are NaNs in the sorting columns so that we
can see the cheapest units by level, discarding rows with no
cost or level data.

rmnan:{(0;..|/nan'x@!p.x)^y} / removes rows with NaNs in columns x from table y
pp (..x@<level)(..x@<cost)rmnan["level cost";t]
/ === Table 303x9 ===
/ id race alignment level cost xp upgrade hp
/ --------------- --------- --------- ----- ---- -- ------------------ --
/ "Giant Ant Egg" "monster" "neutral" 0 4 4 "Giant Ant" 32
/ "Giant Rat" "monster" "chaotic" 0 5 25 "" 15
/ "Mudcrawler" "monster" "neutral" 0 5 18 "Giant Mudcrawler" 20
/ "Ruffian" "human" "chaotic" 0 7 18 "Thug" 16
/ "Giant Ant" "monster" "neutral" 0 7 16 "Soldier Ant" 22

Note how we used in
rmnan
field expression syntax
..
for a non-table usage to concisely define a lambda
projection using the prefixed
p.x
form to refer to variable
x
from the parent function (note how it’s different from the
q.
prefix which would have referred to a global or local
variable). It could have been written too as
{(0;{|/nan'x@!y}[;x])^y}.

6.5 Amending values #

As usual for values in array languages, tables are
immutable, so mutation is done by returning a new table with
modified values or even new columns. Goal provides a
convenient syntax for amending columns of a table, which is
simple syntax sugar for the tetradic amend
@[d;y;F;z]
form but allows to refer to columns directly by name, like
with normal field expressions.

pp t..[id:_id] / lower case id names: same as @[t;"id";_]
/ === Table 307x9 ===
/ id race alignment level cost xp upgrade hp
/ ------------- ------------ --------- ----- ---- --- ----------- --
/ "blood bat" "bats" "chaotic" 1 23 37 "Dread Bat" 27
/ "dread bat" "bats" "chaotic" 2 32 100 "" 33
/ "vampire bat" "bats" "chaotic" 0 13 22 "Blood Bat" 16
/ "boat" "mechanical" "lawful" 1 10 50 "" 1
/ "galleon" "mechanical" "lawful" 1 10 50 "" 1
pp t..[level+:1] / increment all levels by one
/ === Table 307x9 ===
/ id race alignment level cost xp upgrade hp
/ ------------- ------------ --------- ----- ---- --- ----------- --
/ "Blood Bat" "bats" "chaotic" 2 23 37 "Dread Bat" 27
/ "Dread Bat" "bats" "chaotic" 3 32 100 "" 33
/ "Vampire Bat" "bats" "chaotic" 1 13 22 "Blood Bat" 16
/ "Boat" "mechanical" "lawful" 2 10 50 "" 1
/ "Galleon" "mechanical" "lawful" 2 10 50 "" 1
pp t..[n:!#id][;!"n id level alignment"] / add new column, then select & reorder
/ === Table 307x4 ===
/ n id level alignment
/ - ------------- ----- ---------
/ 0 "Blood Bat" 1 "chaotic"
/ 1 "Dread Bat" 2 "chaotic"
/ 2 "Vampire Bat" 0 "chaotic"
/ 3 "Boat" 1 "lawful"
/ 4 "Galleon" 1 "lawful"

6.6 Aggregations #

We may for example want to compute the mean level, cost, xp
and hp for units in the game, returning them as a simple
flat dict. Note how we use the each
'
adverb to apply a function to each column of a table.

avg:{(+/x)%#x:(nan)^x} / return average of x with NaNs filtered out
fmt.dict[;"%.1f"]@avg'(!"level cost xp hp")#t
/ === Dict (4 keys) ===
/ level| 2.0
/ cost | 36.1
/ xp | 90.5
/ hp | 47.1

It should be noted that those results are not very useful
from a gameplay perspective: they’re just a simple
aggregation that conflates everything together! More
interesting results could be for example the mean HP of
units by level, race or alignment, which leads us to the
next section, introducing “group by” functionality.

6.7 Group by #

Goal doesn’t have a “grouped table” concept like R’s dplyr,
nor a specific DSL for performing “group by” operations on
tables. It doesn’t have either “keyed tables”, unlike some K
dialects, which can be useful to group some columns by some
others. Goal offers instead functionality for performing
grouping operations with arrays, inspired from BQN, that can
easily be used to express the various kinds of interesting
grouping operations on tables.

For example, we might want to compute the average cost and
hp of units by race. In order to do that, we’ll combine
various Goal features, among them filtering (to remove rows
with
""
as race), classify
%X,
and group by indices
=d.
Also, as is usual in dataframe packages, we’ll sort the
result according to the “by” column.

pp (..x@<race)((0;..""=race)^t).. ..[
 race:&race!¿q.by:%race / classify and keep unique
 cost:q.avg'=cost!q.by / average cost of each group by race classification
 hp:q.avg'=hp!q.by / same for hp
]
/ === Table 22x3 ===
/ race cost hp
/ ---------- ---- ----
/ "bats" 22.7 25.3
/ "drake" 44.5 62.6
/ "dunefolk" 37.2 50.0
/ "dwarf" 36.8 48.1
/ "elf" 48.0 48.1

The first line just does filtering and sorting in the same
way as previously in this tutorial. Next, we use dict syntax
to produce a table with the three columns we want. As
mentioned in the help, within a field expression, it’s
possible to use the
q.
variable prefix to refer to actual variables instead of
column names. We use this feature here several times,
starting with assigning to
q.by
the classification indices needed for grouping by race and
filtering the race column with a unique mask. This last part
could also have been done too with
race:?race,
but using the unique mask
¿q.by
is faster, because the already computed
q.by
contains small-range integers, and self-search primitives
like
¿
(also named
firsts)
are very fast on those inputs. The rest should be quite
self-explanatory: use group by indices
=d
on the cost and hp columns using the grouping indices
q.by,
and then apply the
avg
function, without forgetting the
q.
prefix and the each
'
adverb, so that the average is computed on each group.

The kind of grouping operation that produces a summary table
after applying reducing functions on a set of columns
grouped by some others is very common, so it can be
convenient to write a user-defined function handling that
usage.

/ rby groups by cols k, summarises with reducing f[t;by] using grouping indices
/ by, then sorts result by k.
rby:{[k;f;t]
 by:%?["A"~@g:t k;{(1+|/'x)/x}@%'g;g]
 (t[&¿by;k],f[t;by]){x@<x y}/|k
}

/ average cost, hp by race
pp rby["race";..(..q.avg'=x!p.y)'..[cost;hp]](0;..""=race)^t
/ === Table 22x3 ===
/ race cost hp
/ ---------- ---- ----
/ "bats" 22.7 25.3
/ "drake" 44.5 62.6
/ "dunefolk" 37.2 50.0
/ "dwarf" 36.8 48.1
/ "elf" 48.0 48.1

/ average cost, hp by level
pp rby["level";..(..q.avg'=x!p.y)'..[cost;hp]]rmnan["level";t]
/ === Table 6x3 ===
/ level cost hp
/ ----- ----- ----
/ 0 9.6 21.5
/ 1 15.6 31.7
/ 2 29.5 47.4
/ 3 57.3 61.6
/ 4 123.3 82.8

/ average cost, hp by level, race
pp rby[!"level race";..(..q.avg'=x!p.y)'..[cost;hp]]rmnan["level";t]
/ === Table 73x4 ===
/ level race cost hp
/ ----- -------- ---- ----
/ 0 "bats" 13.0 16.0
/ 0 "falcon" 12.0 18.0
/ 0 "goblin" 9.0 18.0
/ 0 "human" 8.3 17.3
/ 0 "merman" 9.0 20.0

This
rby
function is actually an extension of our previous example,
handling grouping by several columns (not just one).
Studying it can be an interesting exercise, so we’ll just
give some pointers. The first line

 by:%?["A"~@g:t k;{(1+|/'x)/x}@%'g;g]

is similar in spirit to the previous example: we compute
grouping indices
by,
but we also handle several columns when
t k
returns a generic array. That case simply uses classify
%X
on each column, and merges all those columns into one using
decode
I/
and applying classify again on the result.

The second line uses the unique mask
¿by
to filter the grouping columns
t[&¿by;k],
and then merges the summary aggregate columns returned by
f[t;by].
The final
{x@<x y}/|k
sorts the result rows by the grouping columns.

In the above examples, we aply the same reducing function
avg
to grouped original columns: this allows for common
aggregation using
(..q.avg'=x!p.y)'
on
..[cost;hp].
Note that
p.y
refers to the grouping indices
y
of the parent function, and that
..[cost;hp]
is a shorthand for
..[cost:cost;hp:hp].

Sometimes, we may want to perform different computations in
the summary or introduce new columns, without actually
grouping any columns everytime.

/ number of units and max hp by level
pp rby["level";....[n:=y;hpmax:|/'=hp!y];rmnan["level";t]]
/ === Table 6x3 ===
/ level n hpmax
/ ----- --- -----
/ 0 20 35
/ 1 81 52
/ 2 102 72
/ 3 88 85
/ 4 10 142

Here we use the freq
=I
form on the grouping indices to get the number of elements
in each group, without actually performing any grouping or
operation on existing columns. Also, we introduce a new
hpmax
column to list the maximum HP values, instead of reusing the name
hp.
We could in a similar way compute an
hpmin
column, for example.

The
lib/table.goal
library provides a similarly flexible
by
function with the same semantics as the above
rby
but without the extra sorting.

6.8 Learn more #

The example script files
examples/dplyr.goal
and
examples/lil.goal
from Goal’s repository provide a translation of the examples
found in R’s dplyr’s introduction and Lil’s manual
(respectively).
They cover similar uses as the present tutorial but with
different datasets. The links above point to html-higlighted
versions of the code for reading convenience.

The
lib/table.goal
file provides a few table-related user-defined functions for
grouping, sorting, and some common cases of joins.

You might also be interested in the
Goal’s fmt.tbl function
article by semperos that gives a walk-through of the
fmt.tbl
function that we used for printing tables.

7 Writing an extension #

This chapter is an introduction to the more advanced topic
of writing an extension for Goal in Go.

 	7.1. Introduction

 	7.2. Setting up an interpreter

 	7.3. Defining a zip file-system value

 	7.4. Defining a variadic function

 	7.5. The whole code

 	7.6. Learn more

7.1 Introduction #

Goal is designed to be easily embedded and extended in Go,
using a relatively high-level API. The Go API for Goal is
provided by a set of packages belonging to a
single module,
with no dependencies outside Go’s standard library.

As an example, we’ll implement an extension for reading zip
files as Goal file system values, based on Go’s standard
archive/zip
package. Once done, we’ll be able to write the following
code in Goal:

import"fs" / assuming GOALLIB points to goal's lib/ dir
/ open the epub file made from Goal docs (epub is zip)
'epubfs:zip.open"goal-docs-gen.epub"
/ read and display the "mimetype" file
say"mimetype: "+ 'epubfs read"mimetype"
/ use fs.ls to get all non-dir file paths in the file system
fpaths:(fs.ls epubfs)..path@&~dir
/ display number of files and list of paths
say"total %d files:\n%s"$(#fpaths),"\n"/fpaths
close epubfs

Executing the script with the extended interpreter will
produce:

mimetype: application/epub+zip
total 14 files:
mimetype
EPUB/chap-FAQ.xhtml
EPUB/chap-from-k.xhtml
EPUB/chap-help.xhtml
EPUB/chap-intro.xhtml
EPUB/chap-tutorial.xhtml
EPUB/chap-working-with-tables.xhtml
EPUB/chap-writing-an-extension.xhtml
EPUB/content.opf
EPUB/index.xhtml
EPUB/nav.xhtml
EPUB/stylesheet.css
EPUB/toc.ncx
META-INF/container.xml

7.2 Setting up an interpreter #

We
first create a
goalzipfs
directory somewhere. There, in a
main.go
file, we write:

package main

import (
	"os"

	"codeberg.org/anaseto/goal"
	"codeberg.org/anaseto/goal/cmd"
	"codeberg.org/anaseto/goal/help"
	gos "codeberg.org/anaseto/goal/os"
)

func main() {
	ctx := goal.NewContext() // new evaluation context for Goal code
	ctx.Log = os.Stderr // configure logging with \x to stderr
	gos.Import(ctx, "") // register all IO/OS primitives with prefix ""
	cmd.Exit(cmd.Run(ctx, cmd.Config{Help: help.HelpFunc(), Man: "goal"}))
}

The code above is a commented copy of
cmd/goal/main.go
as found in Goal’s repository, and produces a goal
interpreter equivalent to the default one in just four
short lines of code. We’ll use this as a basis for our
extension.

As you can see, other than importing the relevant packages,
the code creates a new evaluation context with
goal.NewContext,
then configures and registers any extensions (like the
IO/OS primitives), and finally the
cmd.Run
function runs an interpreter using the created
context, handling command-line arguments too, with some
optional extra configuration for REPL help (using Goal’s
default help here). The
cmd.Exit
function handles the return value of
cmd.Run
to format any errors on stderr, and exits the program with
the appropriate status code.

Before actually compiling and running our interpreter, we
need to provide a
go.mod
file for it by running:

$ go mod init goalzipfs

The latest released version of Goal will automatically be
downloaded and added as a dependency in
go.mod
with the following command:

$ go get codeberg.org/anaseto/goal@latest

You can then build a
goalzipfs
executable in the current directory with:

$ go build

Because we haven’t implemented any extensions yet, that
goalzipfs
executable is still the same as the upstream
goal.

7.3 Defining a zip file-system value #

Goal values are represented by the opaque struct type
goal.V.
That type can represent both unboxed and boxed values.
Examples of unboxed values are integers and floats: they fit
into a struct’s field, without extra indirection. Boxed
values represent most other values, including strings,
arrays, projections, and so on. They don’t fit into the
struct: they are stored in a field as a Go interface value
type, which points to heap-allocated memory.

Goal allows extensions to define new kinds of boxed value
types. In order to do so, one has to define a Go type
satisfying the
goal.BV
interface, which is the interface implemented by all boxed
Goal values.
That interface is described by a set of three methods.

	Append
is used for implementing
$x.

	Matches
implements
x~y
for the new kind of value.

	Type
implements
@x.

Boxed value types can implement extra methods when more
functionality is desired: in our case, we’ll inherit methods
from the
*zip.ReadCloser
type from Go’s standard
archive/zip
package, which satisfies the
fs.FS
file system interface, as well as the
io.Closer
interface.

// zipFS is a wrapper around zip.ReadCloser that implements the goal.BV, fs.FS
// and io.Closer interfaces.
type zipFS struct {
	*zip.ReadCloser
	s string // program string representation
}

// Append appends a program representation of the value to dst.
func (fsys *zipFS) Append(ctx *goal.Context, dst []byte, compact bool) []byte {
	return append(dst, fsys.s...)
}

// Matches reports whether fsys~y.
func (fsys *zipFS) Matches(y goal.BV) bool {
	yv, ok := y.(*zipFS)
	return ok && fsys == yv
}

// Type returns "/" for file system types.
func (fsys *zipFS) Type() string {
	return "/"
}

As you can see, we defined a struct type with two fields:
one of them simply embeds the
*zip.ReadCloser
type, while the extra
s
field is there simply to provide a program string
representation. Without any extra work, the
*zipFS
type represents a Goal generic value that is supported by
many primitives, with specific behavior for
$x,
@x,
and matching. It is also automatically supported by
close
and all the IO primitives working on file system values,
just because it inherits
Open
and
Close
methods from the
*zip.ReadCloser
type. To make the code compile we need to add
"archive/zip"
to the list of imports, along
"os"
and the others.

7.4 Defining a variadic function #

Unlike user-defined lambdas, new Goal functions implemented
in Go are variadic, like all the built-in verbs. We’ll
hence define the function that opens a zip file and produces
a
*zipFS
value as a variadic function. We’ll also need to add the
"fmt"
package to the list of imports.

Variadic functions take a
*goal.Context
argument, and a list of Goal values in stack order (last
argument is the first one).

// VFZipOpen implements the zip.open variadic function.
func VFZipOpen(ctx *goal.Context, args []goal.V) goal.V {
	if len(args) > 1 {
		return goal.Panicf("zip.open : too many arguments (%d)", len(args))
	}
	s, ok := args[0].BV().(goal.S)
	if !ok {
		return goal.Panicf("zip.open s : bad type %q in s", args[0].Type())
	}
	r, err := zip.OpenReader(string(s))
	if err != nil {
		return gos.NewOSError(err)
	}
	return goal.NewV(&zipFS{r, fmt.Sprintf("zip.open[%q]", s)})
}

The function is a straightforward wrapper around
zip.OpenReader
that does some additional argument type checking and error
processing, and provides a concrete program string
representation too (mainly useful in REPL for a file system
value). The
goal.NewV
function is used to produce a generic
goal.V
value from a Go type satisfying the
goal.BV
interface of boxed values.

All that’s left is registering the
VFZipOpen
variadic function into our main context
ctx
in the
main
function, before
cmd.Run.

ctx.RegisterMonad("zip.open", VFZipOpen)

This registers a new
zip.open
monadic verb. Often, introducing new syntax is not
desirable, so storing the function into a global instead is
preferable:

ctx.AssignGlobal("zip.open", ctx.RegisterMonad(".zip.open", VFZipOpen))

In that case, introducing new syntax with
RegisterMonad
is avoided by using an invalid identifier
".zip.open",
which is only used for identifying and display purposes.

Running
go build
again will produce an extended interpreter that can run the
Goal code shown in introduction, so you can open an EPUB
file and process it as any other kind of file system value!

7.5 The whole code #

As a summary, we reproduce the whole code below:

package main

import (
	"archive/zip"
	"fmt"
	"os"

	"codeberg.org/anaseto/goal"
	"codeberg.org/anaseto/goal/cmd"
	"codeberg.org/anaseto/goal/help"
	gos "codeberg.org/anaseto/goal/os"
)

func main() {
	ctx := goal.NewContext() // new evaluation context for Goal code
	ctx.Log = os.Stderr // configure logging with \x to stderr
	gos.Import(ctx, "") // register all IO/OS primitives with prefix ""
	ctx.AssignGlobal("zip.open", ctx.RegisterMonad(".zip.open", VFZipOpen))
	cmd.Exit(cmd.Run(ctx, cmd.Config{Help: help.HelpFunc(), Man: "goal"}))
}

// zipFS is a wrapper around zip.ReadCloser that implements the goal.BV, fs.FS
// and io.Closer interfaces.
type zipFS struct {
	*zip.ReadCloser
	s string // program string representation
}

// Append appends a program representation of the value to dst.
func (fsys *zipFS) Append(ctx *goal.Context, dst []byte, compact bool) []byte {
	return append(dst, fsys.s...)
}

// Matches reports whether fsys~y.
func (fsys *zipFS) Matches(y goal.BV) bool {
	yv, ok := y.(*zipFS)
	return ok && fsys == yv
}

// Type returns "/" for file system types.
func (fsys *zipFS) Type() string {
	return "/"
}

// VFZipOpen implements the zip.open variadic function.
func VFZipOpen(ctx *goal.Context, args []goal.V) goal.V {
	if len(args) > 1 {
		return goal.Panicf("zip.open : too many arguments (%d)", len(args))
	}
	s, ok := args[0].BV().(goal.S)
	if !ok {
		return goal.Panicf("zip.open s : bad type %q in s", args[0].Type())
	}
	r, err := zip.OpenReader(string(s))
	if err != nil {
		return gos.NewOSError(err)
	}
	return goal.NewV(&zipFS{r, fmt.Sprintf("zip.open[%q]", s)})
}

7.6 Learn more #

At this point, you might want to look at the
API docs
of the module’s various packages. As for examples of
extensions, the
os
built-in package is actually written as an extension: it can
be a good first place to look at. Moreover, there are
currently
math
and
io/fs
packages in the repos,
as well as an
archive/zip
package that provides the functionality we implemented in
this tutorial.
We could just have imported it in a similar way as the
os
one.

If you’re also interested in the internals, the
docs/implementation.md
file in goal’s repository gives a short introduction.

